Fire in a central amazon forest: lingering top canopy loss and initial understory regrowth revealed by repeated LiDAR (2026)
- Authors:
- Autor USP: ALMEIDA, DANILO ROBERTI ALVES DE - ESALQ
- Unidade: ESALQ
- DOI: 10.1016/j.foreco.2025.123332
- Subjects: ÁRVORES FLORESTAIS; DOSSEL (BOTÂNICA); FLORESTAS TROPICAIS; INCÊNDIOS FLORESTAIS; MUDANÇA CLIMÁTICA; TECNOLOGIA LIDAR
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Forest Ecology and Management
- ISSN: 0378-1127
- Volume/Número/Paginação/Ano: v. 601, art. 123332, p. 1-14, 2026
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by-nc-nd
-
ABNT
PONTES-LOPES, Aline et al. Fire in a central amazon forest: lingering top canopy loss and initial understory regrowth revealed by repeated LiDAR. Forest Ecology and Management, v. 601, p. 1-14, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.foreco.2025.123332. Acesso em: 19 jan. 2026. -
APA
Pontes-Lopes, A., Stark, S. C., Smith, M. N., Almeida, D. R. A. de, Shao, G., Sato, L. Y., et al. (2026). Fire in a central amazon forest: lingering top canopy loss and initial understory regrowth revealed by repeated LiDAR. Forest Ecology and Management, 601, 1-14. doi:10.1016/j.foreco.2025.123332 -
NLM
Pontes-Lopes A, Stark SC, Smith MN, Almeida DRA de, Shao G, Sato LY, Rincón NLM, Martins GA, Gonçalves NB, Ometto JPHB, Graça PMLA, Aragão LEOC. Fire in a central amazon forest: lingering top canopy loss and initial understory regrowth revealed by repeated LiDAR [Internet]. Forest Ecology and Management. 2026 ; 601 1-14.[citado 2026 jan. 19 ] Available from: https://doi.org/10.1016/j.foreco.2025.123332 -
Vancouver
Pontes-Lopes A, Stark SC, Smith MN, Almeida DRA de, Shao G, Sato LY, Rincón NLM, Martins GA, Gonçalves NB, Ometto JPHB, Graça PMLA, Aragão LEOC. Fire in a central amazon forest: lingering top canopy loss and initial understory regrowth revealed by repeated LiDAR [Internet]. Forest Ecology and Management. 2026 ; 601 1-14.[citado 2026 jan. 19 ] Available from: https://doi.org/10.1016/j.foreco.2025.123332 - A conceptual model for detecting small-scale forest disturbances based on ecosystem worphological traits
- Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes
- Standardizing ecosystem morphological traits from 3D information sources
- Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence
- Mapping total aboveground biomass change in the Brazilian cerrado using Uav-Lidar
- High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD)
- Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?
- Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system
- Spatial characterization of woody species diversity in tropical savannas using GEDI and optical data
- Postfire tree structure from high-resolution LiDAR and RBR sentinel 2A fire severity metrics in a Pinus halepensis-dominated burned stand
Informações sobre o DOI: 10.1016/j.foreco.2025.123332 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
