Investigating machine learning capabilities for fault classification and fault region identification in onshore wind farm collectors (2025)
- Authors:
- USP affiliated authors: OLESKOVICZ, MARIO - EESC ; VIEIRA JÚNIOR, JOSÉ CARLOS DE MELO - EESC ; CUNHA, TALITA MITSUE ONOSE ARAUJO - EESC ; SILVA, MAURÍCIO PAVANI DA - EESC ; DAVI, MOISÉS JUNIOR BATISTA BORGES - EESC
- Unidade: EESC
- DOI: 10.1109/PowerTech59965.2025.11180434
- Assunto: ENGENHARIA ELÉTRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway, NJ, USA
- Date published: 2025
- Conference titles: IEEE Kiel PowerTech - PowerTech 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
DAVI, Moisés Junior Batista Borges et al. Investigating machine learning capabilities for fault classification and fault region identification in onshore wind farm collectors. 2025, Anais.. Piscataway, NJ, USA: Escola de Engenharia de São Carlos, Universidade de São Paulo, 2025. Disponível em: http://dx.doi.org/10.1109/PowerTech59965.2025.11180434. Acesso em: 28 jan. 2026. -
APA
Davi, M. J. B. B., Silva, M. P. da, Lopes, G. N., Cunha, T. M. O. A., Oleskovicz, M., & Vieira Júnior, J. C. de M. (2025). Investigating machine learning capabilities for fault classification and fault region identification in onshore wind farm collectors. In . Piscataway, NJ, USA: Escola de Engenharia de São Carlos, Universidade de São Paulo. doi:10.1109/PowerTech59965.2025.11180434 -
NLM
Davi MJBB, Silva MP da, Lopes GN, Cunha TMOA, Oleskovicz M, Vieira Júnior JC de M. Investigating machine learning capabilities for fault classification and fault region identification in onshore wind farm collectors [Internet]. 2025 ;[citado 2026 jan. 28 ] Available from: http://dx.doi.org/10.1109/PowerTech59965.2025.11180434 -
Vancouver
Davi MJBB, Silva MP da, Lopes GN, Cunha TMOA, Oleskovicz M, Vieira Júnior JC de M. Investigating machine learning capabilities for fault classification and fault region identification in onshore wind farm collectors [Internet]. 2025 ;[citado 2026 jan. 28 ] Available from: http://dx.doi.org/10.1109/PowerTech59965.2025.11180434 - An improved directional protection element for onshore wind farm collector systems
- Enhancing power grid reliability: evaluating machine learning algorithms for fault classification in inverter-based generators interconnection lines
- Insights and recommendations for the assessment and design of fault diagnosis methods applied to modern distribution systems
- Exploring machine learning techniques for fault classification in wind farm collectors
- Exploring machine learning-based solutions for fault classification and region identification in onshore wind farm collector systems
- A feature selection and generalization analysis for high impedance fault classification based on Support Vector Machine
- Exploring the potential of a machine learning-based methodology for fault classification in inverter-based resource interconnection lines
- An impedance-multi-method-based fault location methodology for transmission lines connected to inverter-based resources
- Assessment of traveling wave-based functions in inverter-based resource interconnecting lines
- Classificação de faltas em linhas de interconexão de gerações baseadas em inversores: desvendando o potencial dos métodos de machine learning
Informações sobre o DOI: 10.1109/PowerTech59965.2025.11180434 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| PROD_28053_SYSNO_3274983.... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
