A comparative analysis of denoising methods for deep learning-based audio event detection in noisy agricultural environments (2025)
- Authors:
- USP affiliated authors: MOREIRA, GUILHERME AUGUSTO - EESC E ICMC ; PULCINELLI, LUCAS EDUARDO GULKA - EESC E ICMC ; SOUZA, ANDRÉ MOREIRA - ICMC
- Unidades: EESC E ICMC; ICMC
- DOI: 10.5753/sbbd.2025.247812
- Subjects: APRENDIZAGEM PROFUNDA; REDES NEURAIS; ZOOTECNIA DE PRECISÃO; BIOACÚSTICA
- Keywords: Precision Livestock Farming; Computational Bioacoustics; End-to-End Models; Feature Distortion; Non-stationary Noise
- Agências de fomento:
- Language: Inglês
- Objetivos de Desenvolvimento Sustentável (ODS):
02. Fome zero e agricultura sustentável
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2025
- Source:
- Conference titles: Simpósio Brasileiro de Bancos de Dados - SBBD
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SOUZA, André Moreira e MOREIRA, Guilherme Augusto e PULCINELLI, Lucas Eduardo Gulka. A comparative analysis of denoising methods for deep learning-based audio event detection in noisy agricultural environments. 2025, Anais.. Porto Alegre: SBC, 2025. Disponível em: https://doi.org/10.5753/sbbd.2025.247812. Acesso em: 13 fev. 2026. -
APA
Souza, A. M., Moreira, G. A., & Pulcinelli, L. E. G. (2025). A comparative analysis of denoising methods for deep learning-based audio event detection in noisy agricultural environments. In Anais. Porto Alegre: SBC. doi:10.5753/sbbd.2025.247812 -
NLM
Souza AM, Moreira GA, Pulcinelli LEG. A comparative analysis of denoising methods for deep learning-based audio event detection in noisy agricultural environments [Internet]. Anais. 2025 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.5753/sbbd.2025.247812 -
Vancouver
Souza AM, Moreira GA, Pulcinelli LEG. A comparative analysis of denoising methods for deep learning-based audio event detection in noisy agricultural environments [Internet]. Anais. 2025 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.5753/sbbd.2025.247812 - PATSA-BIL: pipeline for automated texture and structure analysis of borehole image logs
- ImageLogViewer: an open-source solution for exploring images from micro-resistivity and ultrasonic boreholes
- Conceptual and comparative analysis of application metrics in microservices
- Integrating machine learning and data augmentation for automated texture classification in borehole image logs
- Anomaly detection and root cause analysis in cloud-native environments using large language models and Bayesian networks
- AWS powered cloud research environment PaaS
- Deep learning solutions for audio event detection in a swine barn using environmental audio and weak labels
- Practical implications of using non-relational databases to store large genomic data files and novel phenotypes
- Respiratory rate regression in Holstein dairy cattle with deep neural networks: an evaluation on different body regions
Informações sobre o DOI: 10.5753/sbbd.2025.247812 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3272358.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
