Maximality and productivity of the weak Lindelöf property (2024)
- Authors:
- USP affiliated authors: ALAS, OFELIA TERESA - IME ; JUNQUEIRA, LUCIA RENATO - IME
- Unidade: IME
- Assunto: FUNÇÕES DE UMA VARIÁVEL COMPLEXA
- Keywords: Teorema de Lindelöf
- Language: Inglês
- Imprenta:
- Source:
- Título: Houston Journal of Mathematics
- ISSN: 0362-1588
- Volume/Número/Paginação/Ano: v. 50, n. 3, p. 709-723, 2024
-
ABNT
ALAS, Ofélia Teresa et al. Maximality and productivity of the weak Lindelöf property. Houston Journal of Mathematics, v. 50, n. 3, p. 709-723, 2024Tradução . . Acesso em: 23 jan. 2026. -
APA
Alas, O. T., Gutiérrez-Domínguez, L. E., Junqueira, L. R., & Wilson, R. G. (2024). Maximality and productivity of the weak Lindelöf property. Houston Journal of Mathematics, 50( 3), 709-723. -
NLM
Alas OT, Gutiérrez-Domínguez LE, Junqueira LR, Wilson RG. Maximality and productivity of the weak Lindelöf property. Houston Journal of Mathematics. 2024 ; 50( 3): 709-723.[citado 2026 jan. 23 ] -
Vancouver
Alas OT, Gutiérrez-Domínguez LE, Junqueira LR, Wilson RG. Maximality and productivity of the weak Lindelöf property. Houston Journal of Mathematics. 2024 ; 50( 3): 709-723.[citado 2026 jan. 23 ] - Dually discrete spaces
- Star countable spaces and ω-domination of discrete subspaces
- Countability and star covering properties
- On the extent of star countable spaces
- Discrete reflexivity in squares
- Axioma de Martin
- When is a P-space weakly discretely generated?
- Lindelöf domination versus ω-domination of discrete subsets
- On cellular-compactness and related properties
- The degree of weakly discretely generated spaces
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
