MDS2-C3PF: a medical data sharing scheme with cloud-chain cooperation and policy fusion in IoT (2022)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.3390/sym14122479
- Subjects: INTERNET; TECNOLOGIAS DA SAÚDE; PROCESSAMENTO DE DADOS; ALGORITMOS
- Keywords: Cooperation retrieval; Co-authorization; Policy conflict resolution; Blockchain; IoMT
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PAN, Heng et al. MDS2-C3PF: a medical data sharing scheme with cloud-chain cooperation and policy fusion in IoT. Symmetry, v. 14, n. 12, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.3390/sym14122479. Acesso em: 26 jan. 2026. -
APA
Pan, H., Zhang, Y., Si, X., Yao, Z., & Liang, Z. (2022). MDS2-C3PF: a medical data sharing scheme with cloud-chain cooperation and policy fusion in IoT. Symmetry, 14( 12), 1-21. doi:10.3390/sym14122479 -
NLM
Pan H, Zhang Y, Si X, Yao Z, Liang Z. MDS2-C3PF: a medical data sharing scheme with cloud-chain cooperation and policy fusion in IoT [Internet]. Symmetry. 2022 ; 14( 12): 1-21.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3390/sym14122479 -
Vancouver
Pan H, Zhang Y, Si X, Yao Z, Liang Z. MDS2-C3PF: a medical data sharing scheme with cloud-chain cooperation and policy fusion in IoT [Internet]. Symmetry. 2022 ; 14( 12): 1-21.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3390/sym14122479 - Fractal color image compression
- Network-based stochastic semisupervised learning
- Imputation of missing data supported by complete p-partite attribute-based decision graphs
- K-associated optimal network for graph embedding dimensionality reduction
- Chaotic synchronization for scene segmentation
- Musical scales recognition via deterministic walk in a graph
- Phase-noise-induced resonance in arrays of coupled excitable neural models
- Uncovering overlapping structures via stochastic competitive learning
- Selecting nodes with inhomogeneous centrality profile for labeling for network-based semi-supervised learning
- A scheme for high level data classification using random walk and network measures
Informações sobre o DOI: 10.3390/sym14122479 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003267064.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
