Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: an assessment using machine learning and statistical approaches (2025)
- Authors:
- USP affiliated authors: CARVALHO, CARLOS HENRIQUE GROHMANN DE - IEE ; CARVALHO, CARLOS HENRIQUE GROHMANN DE - IAG ; DIAS, HELEN CRISTINA - IEE
- Unidades: IEE; IAG
- Subjects: DESLIZAMENTO DE TERRA; IMAGEAMENTO DE SATÉLITE
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Geociências
- Volume/Número/Paginação/Ano: v.15, n.3, p.1-17, Mar.2025
-
ABNT
DIAS, Helen Cristina e HOLBLING, Daniel e GROHMANN, Carlos Henrique. Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: an assessment using machine learning and statistical approaches. Geociências, v. 15, n. 3, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.3390/geosciences15030077. Acesso em: 17 nov. 2025. -
APA
Dias, H. C., Holbling, D., & Grohmann, C. H. (2025). Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: an assessment using machine learning and statistical approaches. Geociências, 15( 3), 1-17. Recuperado de https://doi.org/10.3390/geosciences15030077 -
NLM
Dias HC, Holbling D, Grohmann CH. Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: an assessment using machine learning and statistical approaches [Internet]. Geociências. 2025 ;15( 3): 1-17.[citado 2025 nov. 17 ] Available from: https://doi.org/10.3390/geosciences15030077 -
Vancouver
Dias HC, Holbling D, Grohmann CH. Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: an assessment using machine learning and statistical approaches [Internet]. Geociências. 2025 ;15( 3): 1-17.[citado 2025 nov. 17 ] Available from: https://doi.org/10.3390/geosciences15030077 - Statistical-based shallow landslide susceptibility assessment for a tropical environment: a case study in the southeastern Brazilian coast
- An object-based approach for semi-automated shallow landslide mapping: suitability and comparison in Itaóca (SP) and Nova Friburgo (RJ), southeastern Brazil
- Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil
- Landslide Susceptibility Mapping in Brazil: a review
- Standards for shallow landslide identification in Brazil: Spatial trends and inventory mapping
- Distinction between watersheds prone to debris flow, debris flood, and flood using morphometry in Serra do Mar, Brazil (São Paulo State North shore)
- Effects of spatial resolution on slope and aspect derivation for regional-scale analysis
- Motion maps derived from optical satellite images: the case study of the East Anatolian Fault (Türkiye)
- Forest Restoration Monitoring Protocol with a Low-Cost Remotely Piloted Aircraft: lessons Learned from a Case Study in the Brazilian Atlantic Forest
- Análise morfométrica em sistemas de informação geográfica: aplicação dos softwares livres Grass e R
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
