A metrics-oriented architectural model to characterize complexity on machine learning-enabled systems (2025)
- Autor:
- Autor USP: FERREIRA, RENATO CORDEIRO - IME
- Unidade: IME
- Sigla do Departamento: MAC
- DOI: 10.1109/CAIN66642.2025.00041
- Subjects: APRENDIZADO COMPUTACIONAL; ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES; MÉTRICAS DE SOFTWARE
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2025
- Source:
- Volume/Número/Paginação/Ano: p. 256-260, 2025
- Conference titles: IEEE/ACM International Conference on AI Engineering - Software Engineering for AI - CAIN
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
FERREIRA, Renato Cordeiro. A metrics-oriented architectural model to characterize complexity on machine learning-enabled systems. 2025, Anais.. Piscataway: IEEE, 2025. p. 256-260. Disponível em: https://doi.org/10.1109/CAIN66642.2025.00041. Acesso em: 30 dez. 2025. -
APA
Ferreira, R. C. (2025). A metrics-oriented architectural model to characterize complexity on machine learning-enabled systems. In (p. 256-260). Piscataway: IEEE. doi:10.1109/CAIN66642.2025.00041 -
NLM
Ferreira RC. A metrics-oriented architectural model to characterize complexity on machine learning-enabled systems [Internet]. 2025 ; 256-260.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1109/CAIN66642.2025.00041 -
Vancouver
Ferreira RC. A metrics-oriented architectural model to characterize complexity on machine learning-enabled systems [Internet]. 2025 ; 256-260.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1109/CAIN66642.2025.00041 - An integrated implementation of probabilistic graphical models
- Integrating CRISP-DM and eXtreme programming in agile data science projects
- Using real code to teach good programming practices
- The evolution of CRISP-DM for data science: methods, processes and frameworks
- The journey of CodeLab: how university hackathons built a community of engaged students
- Being agile in a data science project
- Exploring micro frontends: a case study application in e-commerce
- Byron, an event-driven microservices framework
- SPIRA: building an intelligent system for respiratory insufficiency detection
- Making a pipeline production-peady: challenges and lessons learned in the healthcare domain
Informações sobre o DOI: 10.1109/CAIN66642.2025.00041 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3261864.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
