On the relative merits of interpolation schemes for the immersed boundary method: a case study with the heat equation (2025)
- Authors:
- USP affiliated authors: GRION, LIVIA SOUZA FREIRE - ICMC ; JESUS, ANNA CAROLINE FELIX SANTOS DE - ICMC
- Unidade: ICMC
- DOI: 10.5540/tcam.2025.026.e01833
- Subjects: INTERPOLAÇÃO; ERRO; PRECISÃO DO TESTE
- Keywords: Immersed boundary method; Bilinear interpolation; Inverse distance weighted interpolation; Heat equation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: São Carlos
- Date published: 2025
- Source:
- Título: Trends in Computational and Applied Mathematics
- ISSN: 2676-0029
- Volume/Número/Paginação/Ano: v. 26, n. 1, p. 1-20, 2025
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
LESINHOVSKI, Willian Carlos et al. On the relative merits of interpolation schemes for the immersed boundary method: a case study with the heat equation. Trends in Computational and Applied Mathematics, v. 26, n. 1, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.5540/tcam.2025.026.e01833. Acesso em: 27 dez. 2025. -
APA
Lesinhovski, W. C., Dias, N. L., Freire, L. S., & Jesus, A. C. F. S. de. (2025). On the relative merits of interpolation schemes for the immersed boundary method: a case study with the heat equation. Trends in Computational and Applied Mathematics, 26( 1), 1-20. doi:10.5540/tcam.2025.026.e01833 -
NLM
Lesinhovski WC, Dias NL, Freire LS, Jesus ACFS de. On the relative merits of interpolation schemes for the immersed boundary method: a case study with the heat equation [Internet]. Trends in Computational and Applied Mathematics. 2025 ; 26( 1): 1-20.[citado 2025 dez. 27 ] Available from: https://doi.org/10.5540/tcam.2025.026.e01833 -
Vancouver
Lesinhovski WC, Dias NL, Freire LS, Jesus ACFS de. On the relative merits of interpolation schemes for the immersed boundary method: a case study with the heat equation [Internet]. Trends in Computational and Applied Mathematics. 2025 ; 26( 1): 1-20.[citado 2025 dez. 27 ] Available from: https://doi.org/10.5540/tcam.2025.026.e01833 - Parallel implementation in Chapel for the numerical solution of the 3D Poisson problem
- Implementação do modelo k-epsilon via método dos volumes finitos para uma simulação de camada limite neutra
- Lid-driven cavity simulation using the Chapel programming language
- Runtime comparison between Chapel and Fortran
- Solução numérica do modelo de Stokes-Brinkman para escoamentos em meios porosos
- Vapor pressure deficit helps explain biogenic volatile organic compound fluxes from the forest floor and canopy of a temperate deciduous forest
- Large-eddy simulation of smooth and rough channel flows using a one-dimensional stochastic wall model
- In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles
- Mean scalar profiles from large-eddy simulation
- Atmospheric small-scale turbulence from three-dimensional hot-film data
Informações sobre o DOI: 10.5540/tcam.2025.026.e01833 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3245534.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
