HEACT: Hybrid Evolutionary Algorithm for the multi-region multi-objective cloud task scheduling problem: a study of workflow scheduling in AWS EC2 (2025)
- Authors:
- USP affiliated authors: SICHMAN, JAIME SIMÃO - EP ; CARVALHO, VINICIUS RENAN DE - EP
- Unidade: EP
- DOI: 10.1007/978-3-031-79032-4_4
- Subjects: COMPUTAÇÃO EM NUVEM; COMPUTAÇÃO EVOLUTIVA; ALGORITMOS; PROGRAMAÇÃO HEURÍSTICA; PARETO OTIMALIDADE
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture notes in computer science
- ISSN: 1611-3349
- Volume/Número/Paginação/Ano: v. 15413, p. 49-64, Jan. 2025
- Conference titles: Brazilian Conference on Intelligent Systems - BRACIS
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CARVALHO, Vinicius Renan de e SICHMAN, Jaime S. HEACT: Hybrid Evolutionary Algorithm for the multi-region multi-objective cloud task scheduling problem: a study of workflow scheduling in AWS EC2. Lecture notes in computer science. Cham: Escola Politécnica, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/978-3-031-79032-4_4. Acesso em: 28 dez. 2025. , 2025 -
APA
Carvalho, V. R. de, & Sichman, J. S. (2025). HEACT: Hybrid Evolutionary Algorithm for the multi-region multi-objective cloud task scheduling problem: a study of workflow scheduling in AWS EC2. Lecture notes in computer science. Cham: Escola Politécnica, Universidade de São Paulo. doi:10.1007/978-3-031-79032-4_4 -
NLM
Carvalho VR de, Sichman JS. HEACT: Hybrid Evolutionary Algorithm for the multi-region multi-objective cloud task scheduling problem: a study of workflow scheduling in AWS EC2 [Internet]. Lecture notes in computer science. 2025 ; 15413( Ja 2025): 49-64.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/978-3-031-79032-4_4 -
Vancouver
Carvalho VR de, Sichman JS. HEACT: Hybrid Evolutionary Algorithm for the multi-region multi-objective cloud task scheduling problem: a study of workflow scheduling in AWS EC2 [Internet]. Lecture notes in computer science. 2025 ; 15413( Ja 2025): 49-64.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/978-3-031-79032-4_4 - Applying social choice theory to solve engineering multi-objective optimization problems
- Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems
- Applying social choice theory to solve engineering multi-objective optimization problems
- Modeling organization in MAS: a comparison of models
- Virtual players in RPG
- Strategy representation complexity in an evolutionary n-players prisoner's dilemma model
- A philosophical perspective of multiagent-based simulation in the social sciences
- Simulation as formal and generative social science: the very idea
- An experiment on the role of cognition power on the evolution of cooperation in n-players prisoner's dilemma
- Organizational modeling dimensions in multiagent systems
Informações sobre o DOI: 10.1007/978-3-031-79032-4_4 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3245276_post_print.pdf | |||
| 3245276.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
