A machine learning approach to predicting dynamical observables from network structure (2024)
- Authors:
- USP affiliated authors: RODRIGUES, FRANCISCO APARECIDO - ICMC ; PERON, THOMAS KAUÊ DAL'MASO - ICMC
- Unidade: ICMC
- DOI: 10.1098/rspa.2024.0435
- Subjects: REDES COMPLEXAS; APRENDIZADO COMPUTACIONAL; SISTEMAS DINÂMICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings of the Royal Society A
- ISSN: 1471-2946
- Volume/Número/Paginação/Ano: v. 481, p. 1-12, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RODRIGUES, Francisco Aparecido et al. A machine learning approach to predicting dynamical observables from network structure. Proceedings of the Royal Society A, v. 481, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1098/rspa.2024.0435. Acesso em: 12 fev. 2026. -
APA
Rodrigues, F. A., Peron, T., Connaughton, C., Kurths, J., & Moreno, Y. (2024). A machine learning approach to predicting dynamical observables from network structure. Proceedings of the Royal Society A, 481, 1-12. doi:10.1098/rspa.2024.0435 -
NLM
Rodrigues FA, Peron T, Connaughton C, Kurths J, Moreno Y. A machine learning approach to predicting dynamical observables from network structure [Internet]. Proceedings of the Royal Society A. 2024 ; 481 1-12.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1098/rspa.2024.0435 -
Vancouver
Rodrigues FA, Peron T, Connaughton C, Kurths J, Moreno Y. A machine learning approach to predicting dynamical observables from network structure [Internet]. Proceedings of the Royal Society A. 2024 ; 481 1-12.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1098/rspa.2024.0435 - Collective dynamics of random Janus oscillator networks
- Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptions
- Onset of synchronization of Kuramoto oscillators in scale-free networks
- Comparison of different spike train synchrony measures regarding their robustness to erroneous data from bicuculline-induced epileptiform activity
- Dynamics of Kuramoto oscillators in complex networks
- Sincronização explosiva em redes complexas
- Structure and function in artificial, zebrafish and human neural networks
- Effects of clustering heterogeneity on the spectral density of sparse networks
- Discordant synchronization patterns on directed networks of identical phase oscillators with attractive and repulsive couplings
- Network processes on clique-networks with high average degree: the limited effect of higher-order structure
Informações sobre o DOI: 10.1098/rspa.2024.0435 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3236667.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
