Identifying key genes in cancer networks using persistent homology (2025)
- Authors:
- USP affiliated authors: FERREIRA, CYNTHIA DE OLIVEIRA LAGE - ICMC ; SIMÃO, ADENILSO DA SILVA - ICMC ; BARDELOTTE, YAGO AUGUSTO - ICMC ; RAMOS, RODRIGO HENRIQUE - ICMC
- Unidade: ICMC
- DOI: 10.1038/s41598-025-87265-4
- Subjects: GENÔMICA; NEOPLASIAS; ANÁLISE DE DADOS; PROTEÍNAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Scientific Reports
- ISSN: 2045-2322
- Volume/Número/Paginação/Ano: v. 15, p. 1-13, 2025
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
RAMOS, Rodrigo Henrique et al. Identifying key genes in cancer networks using persistent homology. Scientific Reports, v. 15, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1038/s41598-025-87265-4. Acesso em: 02 jan. 2026. -
APA
Ramos, R. H., Bardelotte, Y. A., Ferreira, C. de O. L., & Simão, A. da S. (2025). Identifying key genes in cancer networks using persistent homology. Scientific Reports, 15, 1-13. doi:10.1038/s41598-025-87265-4 -
NLM
Ramos RH, Bardelotte YA, Ferreira C de OL, Simão A da S. Identifying key genes in cancer networks using persistent homology [Internet]. Scientific Reports. 2025 ; 15 1-13.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1038/s41598-025-87265-4 -
Vancouver
Ramos RH, Bardelotte YA, Ferreira C de OL, Simão A da S. Identifying key genes in cancer networks using persistent homology [Internet]. Scientific Reports. 2025 ; 15 1-13.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1038/s41598-025-87265-4 - The central role of cancer driver genes in pathway networks according to persistence homology
- Human protein-protein interaction networks: a topological comparison review
- Topological characterization of cancer driver genes using reactome super pathways networks
- Analyzing different cancer mutation data sets from breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and prostate adenocarcinoma (PRAD)
- Causal model discovery in cancer guided by cellular pathways
- The survival rate among unvaccinated, first dose, and second dose Brazilian hospitalized and ICU COVID patients by age group
- Combining mutation and gene network data in a machine learning approach for false-positive cancer driver gene discovery
- ACDBio: the biological data computational analysis group at ICMC/USP, IFSP, and Barretos Cancer Hospital
- Utilizing Structural Features from Protein Interaction Sub-Networks to Analyze Cancer Genes
- Resilience and structure of metabolic networks
Informações sobre o DOI: 10.1038/s41598-025-87265-4 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3234949.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
