Local Lebesgue solvability of elliptic and canceling linear differential equations with measure data (2024)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- Subjects: MATEMÁTICA; OPERADORES ELÍTICOS; EQUAÇÕES DIFERENCIAIS LINEARES
- Language: Inglês
- Imprenta:
- Publisher: Baylor University
- Publisher place: Waco
- Date published: 2024
- Source:
- Título: Abstracts
- Conference titles: Baylor Math Colloquium
-
ABNT
PICON, Tiago Henrique e BILIATTO, Victor. Local Lebesgue solvability of elliptic and canceling linear differential equations with measure data. 2024, Anais.. Waco: Baylor University, 2024. Disponível em: https://sites.baylor.edu/brian_simanek/1019-2/. Acesso em: 20 fev. 2026. -
APA
Picon, T. H., & Biliatto, V. (2024). Local Lebesgue solvability of elliptic and canceling linear differential equations with measure data. In Abstracts. Waco: Baylor University. Recuperado de https://sites.baylor.edu/brian_simanek/1019-2/ -
NLM
Picon TH, Biliatto V. Local Lebesgue solvability of elliptic and canceling linear differential equations with measure data [Internet]. Abstracts. 2024 ;[citado 2026 fev. 20 ] Available from: https://sites.baylor.edu/brian_simanek/1019-2/ -
Vancouver
Picon TH, Biliatto V. Local Lebesgue solvability of elliptic and canceling linear differential equations with measure data [Internet]. Abstracts. 2024 ;[citado 2026 fev. 20 ] Available from: https://sites.baylor.edu/brian_simanek/1019-2/ - L1 estimares for elliptic complexes
- Fractional Hardy-Sobolev inequalities for canceling elliptic differential operators
- Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators
- Fractional Hardy-Sobolev inequalities for elliptic differential operators
- L strong charges for elliptic systems of complex vector fields
- ICMC Summer Meeting on Differential Equations: session organizers and link managers: harmonic analysis and related topics
- Div–curl type estimates for elliptic systems of complex vector fields
- Stein-Weiss inequality in L 1 norm for vector fields
- Stein-Weiss inequality in L 1 norm for vector fields
- Funções analíticas complexas e o princípio da reflexão
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003228961.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
