Friedrichs' Lemma for Besov and Triebel-Lizorkin spaces (2024)
- Authors:
- Autor USP: SILVA, EVANDRO RAIMUNDO DA - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-031-69702-9_13
- Subjects: ESPAÇOS DE BESOV; EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Geometric analysis of PDEs and several complex variables : in honor of Jorge Hounie's 75th birthday, Serra Negra, Brazil, July 31-August 4, 2023
- ISSN: 2524-6755
- Volume/Número/Paginação/Ano: 357 p
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVA, Evandro Raimundo da e SANTOS FILHO, José Ruidival dos. Friedrichs' Lemma for Besov and Triebel-Lizorkin spaces. Geometric analysis of PDEs and several complex variables : in honor of Jorge Hounie's 75th birthday, Serra Negra, Brazil, July 31-August 4, 2023. Tradução . Cham: Springer, 2024. . Disponível em: https://doi.org/10.1007/978-3-031-69702-9_13. Acesso em: 21 jan. 2026. -
APA
Silva, E. R. da, & Santos Filho, J. R. dos. (2024). Friedrichs' Lemma for Besov and Triebel-Lizorkin spaces. In Geometric analysis of PDEs and several complex variables : in honor of Jorge Hounie's 75th birthday, Serra Negra, Brazil, July 31-August 4, 2023. Cham: Springer. doi:10.1007/978-3-031-69702-9_13 -
NLM
Silva ER da, Santos Filho JR dos. Friedrichs' Lemma for Besov and Triebel-Lizorkin spaces [Internet]. In: Geometric analysis of PDEs and several complex variables : in honor of Jorge Hounie's 75th birthday, Serra Negra, Brazil, July 31-August 4, 2023. Cham: Springer; 2024. [citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/978-3-031-69702-9_13 -
Vancouver
Silva ER da, Santos Filho JR dos. Friedrichs' Lemma for Besov and Triebel-Lizorkin spaces [Internet]. In: Geometric analysis of PDEs and several complex variables : in honor of Jorge Hounie's 75th birthday, Serra Negra, Brazil, July 31-August 4, 2023. Cham: Springer; 2024. [citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/978-3-031-69702-9_13 - Local solvability for a class of linear operators in Triebel-Lizorkin spaces
- Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces
- Existence of trace for solutions of locally integrable systems of vector fields
- Local solvability for a class of linear operators in Besov spaces
- Local solvability for a class of linear operators in Triebel-Lizorkin spaces
- Local solvability for a class of linear operators in Besov and Hölder spaces
- Local solvability for real-analytic involutive structures of tube type of corank one
- Solvability near the characteristic set for a special class of complex vector fields
- Resolubilidade perto do conjunto característico para uma classe especial de campos complexos
- Solvability near the characteristic set for a special class of complex vector fields
Informações sobre o DOI: 10.1007/978-3-031-69702-9_13 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3227318.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
