TKDP: threefold knowledge-enriched deep prompt tuning for few-shot named entity recognition (2024)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1109/TKDE.2024.3389650
- Subjects: CIÊNCIA DA COMPUTAÇÃO; PROCESSAMENTO DE LINGUAGEM NATURAL; LINGUAGEM DE MÁQUINA
- Keywords: Few-shot learning; HowNet; Named entity recognition (NER); Prompt tuning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: IEEE Transactions on Knowledge and Data Engineering
- ISSN: 1041-4347
- Volume/Número/Paginação/Ano: v. 36, n. 11, p. 6397-6409, 2024
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
LIU, Jiang et al. TKDP: threefold knowledge-enriched deep prompt tuning for few-shot named entity recognition. IEEE Transactions on Knowledge and Data Engineering, v. 36, n. 11, p. 6397-6409, 2024Tradução . . Disponível em: https://doi.org/10.1109/TKDE.2024.3389650. Acesso em: 01 dez. 2025. -
APA
Liu, J., Fei, H., Li, F., Li, J., Li, B., Liang, Z., et al. (2024). TKDP: threefold knowledge-enriched deep prompt tuning for few-shot named entity recognition. IEEE Transactions on Knowledge and Data Engineering, 36( 11), 6397-6409. doi:10.1109/TKDE.2024.3389650 -
NLM
Liu J, Fei H, Li F, Li J, Li B, Liang Z, Teng C, Ji D. TKDP: threefold knowledge-enriched deep prompt tuning for few-shot named entity recognition [Internet]. IEEE Transactions on Knowledge and Data Engineering. 2024 ; 36( 11): 6397-6409.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1109/TKDE.2024.3389650 -
Vancouver
Liu J, Fei H, Li F, Li J, Li B, Liang Z, Teng C, Ji D. TKDP: threefold knowledge-enriched deep prompt tuning for few-shot named entity recognition [Internet]. IEEE Transactions on Knowledge and Data Engineering. 2024 ; 36( 11): 6397-6409.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1109/TKDE.2024.3389650 - Redes de elementos complexos para processamento de informação
- Structural outlier detection: a tourist walk approach
- Network-based high level data classification
- Uncovering overlapping structures via stochastic competitive learning
- Particle competition and cooperation to prevent error propagation from mislabeled data in semi-supervised learning
- Enhancing weak signal transmission through a feedforward network
- Multiple images set classification via network modularity
- Classification of multiple observation sets via network modularity
- Particle competition and cooperation in networks for semi-supervised learning with concept drift
- Aprendizado de máquina em redes complexas
Informações sobre o DOI: 10.1109/TKDE.2024.3389650 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003225672.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
