The lattice overparametrization paradigm for the machine learning of lattice operators (2024)
- Authors:
- USP affiliated authors: BARRERA, JUNIOR - IME ; MARCONDES, DIEGO RIBEIRO - IME
- Unidade: IME
- DOI: 10.1007/978-3-031-57793-2_16
- Subjects: PROCESSAMENTO DE IMAGENS; APRENDIZADO COMPUTACIONAL; OPERADORES
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: International Conference on Discrete Geometry and Mathematical Morphology - DGMM
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MARCONDES, Diego e BARRERA, Junior. The lattice overparametrization paradigm for the machine learning of lattice operators. Proceedings. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-031-57793-2_16. Acesso em: 29 dez. 2025. , 2024 -
APA
Marcondes, D., & Barrera, J. (2024). The lattice overparametrization paradigm for the machine learning of lattice operators. Proceedings. Cham: Springer. doi:10.1007/978-3-031-57793-2_16 -
NLM
Marcondes D, Barrera J. The lattice overparametrization paradigm for the machine learning of lattice operators [Internet]. Proceedings. 2024 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1007/978-3-031-57793-2_16 -
Vancouver
Marcondes D, Barrera J. The lattice overparametrization paradigm for the machine learning of lattice operators [Internet]. Proceedings. 2024 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1007/978-3-031-57793-2_16 - Unrestricted sequential discrete morphological neural networks
- Back to basics to open the black box
- Feature selection from local lift dependence-based partitions
- An algorithm to train unrestricted sequential discrete morphological neural networks
- A data-driven systematic, consistent and non-exhaustive approach to Model Selection
- A resolvent approach to metastability
- Mathematical morphology and its applications to signal and image processing
- Hybrid human-machine non-linear filter design using envelopes
- Finding robust linear expression-based classifiers
- Pattern recognition theory in nonlinear signal processing
Informações sobre o DOI: 10.1007/978-3-031-57793-2_16 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3198037-_The_lattice_over... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
