DIF-SR: a differential item functioning-based sample reweighting method (2024)
- Authors:
- USP affiliated authors: CÚRI, MARIANA - ICMC ; LOPES, ALNEU DE ANDRADE - ICMC ; MINATEL, DIEGO - ICMC ; PARMEZAN, ANTONIO RAFAEL SABINO - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-031-49018-7_45
- Subjects: TEORIA DE RESPOSTA AO ITEM; APRENDIZADO COMPUTACIONAL
- Keywords: Fairness; Data bias; Preprocessing method
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 14469, p. 630-645, 2024
- Conference titles: Iberoamerican Congress on Pattern Recognition - CIARP
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MINATEL, Diego et al. DIF-SR: a differential item functioning-based sample reweighting method. Lecture Notes in Computer Science. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-031-49018-7_45. Acesso em: 08 fev. 2026. , 2024 -
APA
Minatel, D., Parmezan, A. R. S., Cúri, M., & Lopes, A. de A. (2024). DIF-SR: a differential item functioning-based sample reweighting method. Lecture Notes in Computer Science. Cham: Springer. doi:10.1007/978-3-031-49018-7_45 -
NLM
Minatel D, Parmezan ARS, Cúri M, Lopes A de A. DIF-SR: a differential item functioning-based sample reweighting method [Internet]. Lecture Notes in Computer Science. 2024 ; 14469 630-645.[citado 2026 fev. 08 ] Available from: https://doi.org/10.1007/978-3-031-49018-7_45 -
Vancouver
Minatel D, Parmezan ARS, Cúri M, Lopes A de A. DIF-SR: a differential item functioning-based sample reweighting method [Internet]. Lecture Notes in Computer Science. 2024 ; 14469 630-645.[citado 2026 fev. 08 ] Available from: https://doi.org/10.1007/978-3-031-49018-7_45 - DIF-PP: threshold optimization informed by IRT models for group fairness in machine learning
- Fairness-aware model selection using differential item functioning
- A DIF-driven threshold tuning method for improving group fairness
- Item response theory in sample reweighting to build fairer classifiers
- Assessing the role of sensitive attributes in adversarial debiasing
- A multilevel approach for building location-based social network by using stay points
- Local-entity resolution for building location-based social networks by using stay points
- Semi-supervised coarsening of bipartite graphs for text classification via graph neural network
- Diretrizes para melhorar a imparcialidade de classificadores
- Bipartite graph coarsening for text classification using graph neural networks
Informações sobre o DOI: 10.1007/978-3-031-49018-7_45 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3172716.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
