A diameter gap for quotients of the unit sphere (2022)
- Authors:
- Autor USP: GORODSKI, CLAUDIO - IME
- Unidade: IME
- DOI: 10.4171/JEMS/1272
- Subjects: GRUPOS DE LIE; GRUPOS FINITOS; GEOMETRIA RIEMANNIANA
- Keywords: Compact groups; orthogonal representations; orbit space; diameter
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of the European Mathematical Society
- ISSN: 1435-9855
- Volume/Número/Paginação/Ano: v. 25, n. 9, p. 3767-3793, 2022
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
GORODSKI, Claudio et al. A diameter gap for quotients of the unit sphere. Journal of the European Mathematical Society, v. 25, n. 9, p. 3767-3793, 2022Tradução . . Disponível em: https://doi.org/10.4171/JEMS/1272. Acesso em: 05 jan. 2026. -
APA
Gorodski, C., Lange, C., Lytchak, A., & Mendes, R. A. E. (2022). A diameter gap for quotients of the unit sphere. Journal of the European Mathematical Society, 25( 9), 3767-3793. doi:10.4171/JEMS/1272 -
NLM
Gorodski C, Lange C, Lytchak A, Mendes RAE. A diameter gap for quotients of the unit sphere [Internet]. Journal of the European Mathematical Society. 2022 ; 25( 9): 3767-3793.[citado 2026 jan. 05 ] Available from: https://doi.org/10.4171/JEMS/1272 -
Vancouver
Gorodski C, Lange C, Lytchak A, Mendes RAE. A diameter gap for quotients of the unit sphere [Internet]. Journal of the European Mathematical Society. 2022 ; 25( 9): 3767-3793.[citado 2026 jan. 05 ] Available from: https://doi.org/10.4171/JEMS/1272 - The classification of taut irreducible representations
- Polar orthogonal representations of real reductive algebraic groups
- Homogeneous structures and rigidity of isoparametric submanifolds in Hilbert space
- Tight Lagrangian homology spheres in compact homogeneous Kähler manifolds
- Minimal hyperspheres in rank two compact symmetric spaces
- Delaunay-type surfaces in the 2x2 real unimodular group
- Singular Riemannian foliations with sections, transnormal maps and basic forms
- Representations with Sp(1)k-reductions and quaternion-Kähler symmetric spaces
- Highly curved orbit spaces
- Tightness & tautness
Informações sobre o DOI: 10.4171/JEMS/1272 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
