Cooling of power electronic devices using rectangular flat heat pipes with externally and internally cooled condenser regions (2024)
- Authors:
- Autor USP: RIBATSKI, GHERHARDT - EESC
- Unidade: EESC
- DOI: 10.1016/j.applthermaleng.2023.121474
- Subjects: ELETRÔNICA DE POTÊNCIA; EVAPORAÇÃO; DISPOSITIVOS ELETRÔNICOS; ENGENHARIA MECÂNICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Elsevier
- Publisher place: Kidlington, United Kingdom
- Date published: 2024
- Source:
- Título: Applied Thermal Engineering
- ISSN: 1359-4311
- Volume/Número/Paginação/Ano: v. 236, article 121474, p. 1-13, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RAKISHITH, Bairi Levi et al. Cooling of power electronic devices using rectangular flat heat pipes with externally and internally cooled condenser regions. Applied Thermal Engineering, v. 236, p. 1-13, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.applthermaleng.2023.121474. Acesso em: 21 jan. 2026. -
APA
Rakishith, B. L., Asirvatham, L. G., Angeline, A. A., Raj, J. A. P. S., Bose, J. R., Princess, P. J. B., et al. (2024). Cooling of power electronic devices using rectangular flat heat pipes with externally and internally cooled condenser regions. Applied Thermal Engineering, 236, 1-13. doi:10.1016/j.applthermaleng.2023.121474 -
NLM
Rakishith BL, Asirvatham LG, Angeline AA, Raj JAPS, Bose JR, Princess PJB, Gautam S, Mahian O, Ribatski G, Wongwises S. Cooling of power electronic devices using rectangular flat heat pipes with externally and internally cooled condenser regions [Internet]. Applied Thermal Engineering. 2024 ; 236 1-13.[citado 2026 jan. 21 ] Available from: http://dx.doi.org/10.1016/j.applthermaleng.2023.121474 -
Vancouver
Rakishith BL, Asirvatham LG, Angeline AA, Raj JAPS, Bose JR, Princess PJB, Gautam S, Mahian O, Ribatski G, Wongwises S. Cooling of power electronic devices using rectangular flat heat pipes with externally and internally cooled condenser regions [Internet]. Applied Thermal Engineering. 2024 ; 236 1-13.[citado 2026 jan. 21 ] Available from: http://dx.doi.org/10.1016/j.applthermaleng.2023.121474 - Flow boiling heat transfer coefficient of DI-WATER/SIO2 (15 NM AND 80 NM) nanofluids inside microchannels
- Experimental study of ammonia flow boiling in a vertical tube bundle: part 2 – Enhanced dimple tube with full length solid round PVC nonconductive rod
- An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations
- Pool boiling heat transfer of HFE-7100 on metal foams
- Dynamic wettability evaluation of nanoparticles-coated surfaces
- Combining liquid inertia and evaporation momentum forces to achieve flow boiling inversion and performance enhancement in asymmetric Dual V-groove microchannels
- Experimental study of the effect of twisted-tape inserts on flow boiling heat transfer enhancement and pressure drop penalty
- New approach of triumphing temperature nonuniformity and heat transfer performance augmentation in micro pin fin heat sinks
- Flow boiling of R134a and HFE-7000 in a single silicon microchannel with microstructured sidewalls
- On the width and mean value of bubble size distributions under subcooled flow boiling
Informações sobre o DOI: 10.1016/j.applthermaleng.2023.121474 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1-s2.0-S135943112301503X-... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
