On the use of early fusion operators on heterogeneous graph neural networks for one-class learning (2023)
- Authors:
- USP affiliated authors: GOULARTE, RUDINEI - ICMC ; MARCACINI, RICARDO MARCONDES - ICMC ; GÔLO, MARCOS PAULO SILVA - ICMC ; MORAES JUNIOR, MARCELO ISAIAS DE - ICMC
- Unidade: ICMC
- DOI: 10.1145/3617023.3617041
- Subjects: APRENDIZADO COMPUTACIONAL; REDES NEURAIS; MULTIMÍDIA INTERATIVA
- Keywords: Early Fusion; One-Class Learning; Heterogeneous Graphs
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GÔLO, Marcos Paulo Silva et al. On the use of early fusion operators on heterogeneous graph neural networks for one-class learning. 2023, Anais.. New York: ACM, 2023. Disponível em: https://doi.org/10.1145/3617023.3617041. Acesso em: 10 fev. 2026. -
APA
Gôlo, M. P. S., Moraes Junior, M. I. de, Goularte, R., & Marcacini, R. M. (2023). On the use of early fusion operators on heterogeneous graph neural networks for one-class learning. In Proceedings. New York: ACM. doi:10.1145/3617023.3617041 -
NLM
Gôlo MPS, Moraes Junior MI de, Goularte R, Marcacini RM. On the use of early fusion operators on heterogeneous graph neural networks for one-class learning [Internet]. Proceedings. 2023 ;[citado 2026 fev. 10 ] Available from: https://doi.org/10.1145/3617023.3617041 -
Vancouver
Gôlo MPS, Moraes Junior MI de, Goularte R, Marcacini RM. On the use of early fusion operators on heterogeneous graph neural networks for one-class learning [Internet]. Proceedings. 2023 ;[citado 2026 fev. 10 ] Available from: https://doi.org/10.1145/3617023.3617041 - Unsupervised heterogeneous graph neural networks for one-class tasks: exploring early fusion operators
- On the use of aggregation functions for semi-supervised network embedding
- One-class recommendation through unsupervised graph neural networks for link prediction
- The impact of representation learning on unsupervised graph neural networks for one-class recommendation
- Improving natural product knowledge extraction from academic literature with enhanced PDF text extraction and large language models
- Text representation through multimodal variational autoencoder for one-class learning
- One-class learning for data stream through graph neural networks
- On the use of large language models to detect brazilian politics fake news
- Triple-VAE: a triple variational autoencoder to represent events in one-class event detection
- Learning to sense from events via semantic variational autoencoder
Informações sobre o DOI: 10.1145/3617023.3617041 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3161798.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
