Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning (2023)
- Authors:
- USP affiliated authors: RODRIGUES, FRANCISCO APARECIDO - ICMC ; PINEDA, ARUANE MELLO - ICMC ; ALVES, CAROLINE LOURENÇO - ICMC ; PORTO, JOEL AUGUSTO MOURA - IFSC
- Unidades: ICMC; IFSC
- DOI: 10.1093/comnet/cnad030
- Subjects: TECNOLOGIAS DA SAÚDE; APRENDIZADO COMPUTACIONAL; REDES COMPLEXAS; RECONHECIMENTO DE IMAGEM; DIAGNÓSTICO POR COMPUTADOR; DOENÇAS VASCULARES
- Keywords: Electrocardiogram; Time Series; Network measures; Complex networks; Machine learning; Deep learning
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Complex Networks
- ISSN: 2051-1310
- Volume/Número/Paginação/Ano: v. 11, n. 5, p. cnad030-1-cnad030-21, Oct. 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PINEDA, Aruane Mello et al. Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning. Journal of Complex Networks, v. 11, n. 5, p. cnad030-1-cnad030-21, 2023Tradução . . Disponível em: https://doi.org/10.1093/comnet/cnad030. Acesso em: 11 fev. 2026. -
APA
Pineda, A. M., Rodrigues, F. A., Alves, C. L., Möckel, M., Oliveira, T. G. L. de, & Porto, J. A. M. (2023). Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning. Journal of Complex Networks, 11( 5), cnad030-1-cnad030-21. doi:10.1093/comnet/cnad030 -
NLM
Pineda AM, Rodrigues FA, Alves CL, Möckel M, Oliveira TGL de, Porto JAM. Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning [Internet]. Journal of Complex Networks. 2023 ; 11( 5): cnad030-1-cnad030-21.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1093/comnet/cnad030 -
Vancouver
Pineda AM, Rodrigues FA, Alves CL, Möckel M, Oliveira TGL de, Porto JAM. Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning [Internet]. Journal of Complex Networks. 2023 ; 11( 5): cnad030-1-cnad030-21.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1093/comnet/cnad030 - Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia
- On the advances in machine learning and complex network measures to an EEG dataset from DMT experiments
- Diagnosis of autism spectrum disorder based on functional brain networks and machine learning
- EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer's disease and schizophrenia
- Complex networks to differentiate elderly and young people
- Machine learning-based prediction of Q-voter model in complex networks
- Revisiting the involvement of tau in complex neural network remodeling: analysis of the extracellular neuronal activity in organotypic brain slice co-cultures
- Diagnosis of neurological diseases based on data mining and complex network
- Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments
- Revealing patterns in major depressive disorder with machine learning and networks
Informações sobre o DOI: 10.1093/comnet/cnad030 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3157181.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
