Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach (2023)
- Authors:
- Araujo, Anna Luiza Damaceno

- Silva, Viviane Mariano da

- Kudo, Maíra Suzuka

- Souza, Eduardo Santos Carlos de
- Saldivia-Siracusa, Cristina

- Giraldo-Roldán, Daniela

- Lopes, Márcio Ajudarte

- Vargas, Pablo Agustin

- Khurram, Syed Ali

- Pearson, Alexander T

- Kowalski, Luiz Paulo

- Carvalho, André Carlos Ponce de Leon Ferreira de

- Santos-Silva, Alan Roger dos

- Moraes, Matheus Cardoso

- Araujo, Anna Luiza Damaceno
- USP affiliated authors: KOWALSKI, LUIZ PAULO - FM ; CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; SOUZA, EDUARDO SANTOS CARLOS DE - ICMC
- Unidades: FM; ICMC
- DOI: 10.1111/jop.13397
- Subjects: REDES NEURAIS; APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE IMAGEM; TECNOLOGIAS DA SAÚDE; NEOPLASIAS BUCAIS; NEOPLASIAS DE CABEÇA E PESCOÇO
- Keywords: artificial intelligence; artificial neural network; deep learning; oral cancer; supervised learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Oral Pathology and Medicine
- ISSN: 0904-2512
- Volume/Número/Paginação/Ano: v. 52, n. 2, p. 109-118, Feb. 2023
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
ARAUJO, Anna Luiza Damaceno et al. Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach. Journal of Oral Pathology and Medicine, v. 52, n. 2, p. 109-118, 2023Tradução . . Disponível em: https://doi.org/10.1111/jop.13397. Acesso em: 02 jan. 2026. -
APA
Araujo, A. L. D., Silva, V. M. da, Kudo, M. S., Souza, E. S. C. de, Saldivia-Siracusa, C., Giraldo-Roldán, D., et al. (2023). Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach. Journal of Oral Pathology and Medicine, 52( 2), 109-118. doi:10.1111/jop.13397 -
NLM
Araujo ALD, Silva VM da, Kudo MS, Souza ESC de, Saldivia-Siracusa C, Giraldo-Roldán D, Lopes MA, Vargas PA, Khurram SA, Pearson AT, Kowalski LP, Carvalho ACP de LF de, Santos-Silva AR dos, Moraes MC. Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach [Internet]. Journal of Oral Pathology and Medicine. 2023 ; 52( 2): 109-118.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1111/jop.13397 -
Vancouver
Araujo ALD, Silva VM da, Kudo MS, Souza ESC de, Saldivia-Siracusa C, Giraldo-Roldán D, Lopes MA, Vargas PA, Khurram SA, Pearson AT, Kowalski LP, Carvalho ACP de LF de, Santos-Silva AR dos, Moraes MC. Machine learning concepts applied to oral pathology and oral medicine: a convolutional neural networks' approach [Internet]. Journal of Oral Pathology and Medicine. 2023 ; 52( 2): 109-118.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1111/jop.13397 - A convolutional neural network framework with ConvNeXt and Grad-CAM for classification of oral potentially malignant disorders and oral squamous cell carcinoma
- Enhancing explainability in oral cancer detection with Grad-CAM visualizations
- Deep learning for automatic segmentation of clinical photographs of oral premalignant and malignant lesions
- Convnext for the classification of oral potentially malignant disorders and squamous cell carcinoma
- Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional study
- Clinicians' perception of oral potentially malignant disorders: a pitfall for image annotation in supervised learning
- Segmentation of oral lesions through convolutional neural networks
- Cirurgia transoral robótica
- SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
- Histological characteristics of early-stage oral tongue cancer in young versus older patients: a multicenter matched-pair analysis
Informações sobre o DOI: 10.1111/jop.13397 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3113950.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas