On the structure of into isomorphisms between spaces of continuous functions (2023)
- Autor:
- Autor USP: GALEGO, ELOI MEDINA - IME
- Unidade: IME
- DOI: 10.1090/proc/16137
- Subjects: ANÁLISE FUNCIONAL; ESPAÇOS DE BANACH
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2023
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 151, n. 2, p. 693-706, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GALEGO, Eloi Medina. On the structure of into isomorphisms between spaces of continuous functions. Proceedings of the American Mathematical Society, v. 151, n. 2, p. 693-706, 2023Tradução . . Disponível em: https://doi.org/10.1090/proc/16137. Acesso em: 12 fev. 2026. -
APA
Galego, E. M. (2023). On the structure of into isomorphisms between spaces of continuous functions. Proceedings of the American Mathematical Society, 151( 2), 693-706. doi:10.1090/proc/16137 -
NLM
Galego EM. On the structure of into isomorphisms between spaces of continuous functions [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151( 2): 693-706.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1090/proc/16137 -
Vancouver
Galego EM. On the structure of into isomorphisms between spaces of continuous functions [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151( 2): 693-706.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1090/proc/16137 - How far is C(ω) from the other C(K) spaces?
- The subprojectivity of the projective tensor product of two C(K) spaces with |K|=ℵ0
- Espacos de banach das funcoes continuas num compacto
- An optimal nonlinear extension of Banach-Stone theorem
- An isomorphic classification of C(2m×[0, α]) spaces
- A note on extensions of Pełczyński's decomposition method in Banach spaces
- Cantor-Bernstein sextuples for Banach spaces
- Even infinite-dimensional real Banach spaces
- On isomorphism classes of C(2m⊕[0,α]) spaces
- Solution to a problem of Diestel
Informações sobre o DOI: 10.1090/proc/16137 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
