A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI (2021)
- Authors:
- USP affiliated authors: SALMON, CARLOS ERNESTO GARRIDO - FFCLRP ; VIEIRA, BRUNO HEBLING - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1002/hbm.25656
- Subjects: CÉREBRO; DIAGNÓSTICO POR IMAGEM; INTELIGÊNCIA; RESSONÂNCIA MAGNÉTICA; REDE NERVOSA
- Keywords: Brain-behavior; Deep learning; fMRI; Intelligence; Resting-state
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Human Brain Mapping
- ISSN: 1065-9471
- Volume/Número/Paginação/Ano: v. 42, n. 18, p. 5873-5887, 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
VIEIRA, Bruno Hebling et al. A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI. Human Brain Mapping, v. 42, n. 18, p. 5873-5887, 2021Tradução . . Disponível em: https://doi.org/10.1002/hbm.25656. Acesso em: 30 dez. 2025. -
APA
Vieira, B. H., Dubois, J., Calhoun, V. D., & Salmon, C. E. G. (2021). A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI. Human Brain Mapping, 42( 18), 5873-5887. doi:10.1002/hbm.25656 -
NLM
Vieira BH, Dubois J, Calhoun VD, Salmon CEG. A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI [Internet]. Human Brain Mapping. 2021 ; 42( 18): 5873-5887.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1002/hbm.25656 -
Vancouver
Vieira BH, Dubois J, Calhoun VD, Salmon CEG. A deep learning based approach identifies regions more relevant than resting‐state networks to the prediction of general intelligence from resting‐state fMRI [Internet]. Human Brain Mapping. 2021 ; 42( 18): 5873-5887.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1002/hbm.25656 - Sublinear association between cortical thickness at the onset of the adult lifespan and age-related annual atrophy parallels spatial patterns of laminar organization in the adult cerebral cortex
- Cortical thickness and age-related thinning jointly reveal spatial patterns of granularity
- Linking brain biology to intellectual endowment: a review on the associations of human intelligence with neuroimaging data
- Personode: a toolbox for ICA map classification and individualized ROI definition
- Evidence of regional associations between age-related inter-individual differences in resting-state functional connectivity and cortical thinning revealed through a multi-level analysis
- A principled multivariate intersubject analysis of generalized partial directed coherence with Dirichlet regression: application to healthy aging in areas exhibiting cortical thinning
- Brain functional connectivity in regions that exhibit age-related cortical thinning
- Quantification of dendronized superparamagnetic iron oxide nanoparticles in rat liver using quantitative susceptibility mapping
- Quantificação metabólica absoluta in vitro por espectroscopia de ressonância magnética
- Dynamic magnetic resonance spectroscopy in the study of brain metabolism
Informações sobre o DOI: 10.1002/hbm.25656 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
