Induced morphisms between Heyting-valued models (2022)
- Authors:
- USP affiliated authors: MARIANO, HUGO LUIZ - IME ; ALVIM, JOSÉ GOUDET - IME ; CAHALI, ARTHUR FRANCISCO SCHWERZ - IME
- Unidade: IME
- Assunto: MATEMÁTICA APLICADA
- Keywords: Heyting-valued models; localic topoi; geometric morphisms
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Applied Logics - IfCoLog Journal of Logics and their Applications
- ISSN: 2631-9810
- Volume/Número/Paginação/Ano: v. 9, n. 1, p. 5-40, 2022
- Conference titles: Brazilian Logic Conference - EBL
-
ABNT
ALVIM, José Goudet e CAHALI, Arthur Francisco Schwerz e MARIANO, Hugo Luiz. Induced morphisms between Heyting-valued models. Journal of Applied Logics - IfCoLog Journal of Logics and their Applications. London: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://collegepublications.co.uk/ifcolog/?00053. Acesso em: 28 dez. 2025. , 2022 -
APA
Alvim, J. G., Cahali, A. F. S., & Mariano, H. L. (2022). Induced morphisms between Heyting-valued models. Journal of Applied Logics - IfCoLog Journal of Logics and their Applications. London: Instituto de Matemática e Estatística, Universidade de São Paulo. Recuperado de https://collegepublications.co.uk/ifcolog/?00053 -
NLM
Alvim JG, Cahali AFS, Mariano HL. Induced morphisms between Heyting-valued models [Internet]. Journal of Applied Logics - IfCoLog Journal of Logics and their Applications. 2022 ; 9( 1): 5-40.[citado 2025 dez. 28 ] Available from: https://collegepublications.co.uk/ifcolog/?00053 -
Vancouver
Alvim JG, Cahali AFS, Mariano HL. Induced morphisms between Heyting-valued models [Internet]. Journal of Applied Logics - IfCoLog Journal of Logics and their Applications. 2022 ; 9( 1): 5-40.[citado 2025 dez. 28 ] Available from: https://collegepublications.co.uk/ifcolog/?00053 - Some contributions to Boolean-valued set theory regarding arrows induced by morphisms between complete Boolean algebras
- Categorical constructions of sets valued on semicartesian and involutive quantales
- On categories of quantale valued sets
- Quantale valued sets: categorical constructions and properties
- Lógica de topos e aplicações
- A global approach to AECs
- Towards a good notion of categories of logics
- Remarks on propositional logics and the categorial relationship between institutions and Π-institutions
- Categorial forms of the axiom of choice
- κ-filter pairs and non-finitary logics
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
