On speciality of Jordan brackets (2009)
- Autor:
- Autor USP: CHESTAKOV, IVAN - IME
- Unidade: IME
- Assunto: ÁLGEBRAS DE JORDAN
- Keywords: Jordan superalgebra; Jordan bracket; Poisson bracket; special algebra; Kantor double
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Algebra and Discrete Mathematics
- ISSN: 1726-3255
- Volume/Número/Paginação/Ano: v. 8, n. 3, p. 94-101, 2009
-
ABNT
SHESTAKOV, Ivan P. On speciality of Jordan brackets. Algebra and Discrete Mathematics, v. 8, n. 3, p. 94-101, 2009Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/737/268. Acesso em: 25 jan. 2026. -
APA
Shestakov, I. P. (2009). On speciality of Jordan brackets. Algebra and Discrete Mathematics, 8( 3), 94-101. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/737/268 -
NLM
Shestakov IP. On speciality of Jordan brackets [Internet]. Algebra and Discrete Mathematics. 2009 ; 8( 3): 94-101.[citado 2026 jan. 25 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/737/268 -
Vancouver
Shestakov IP. On speciality of Jordan brackets [Internet]. Algebra and Discrete Mathematics. 2009 ; 8( 3): 94-101.[citado 2026 jan. 25 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/737/268 - On speciality of binary-Lie algebras
- Simple special Jordan superalgebras with associative even part
- Irreducible bimodules over alternative algebras and superalgebras
- Jordan gradings on associative algebras
- On the Lie structure of the skew elements of a prime superalgebra with superinvolution
- Gradings of simple Jordan algebras and their relation to the gradings of simple associative algebras
- Jordan superalgebras defined by brackets
- On speciality of Bernstein Jordan algebras
- Noncommutative Jordan superalgebras of degree n > 2
- Self-iterating Lie and associative algebras
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3046841.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
