Dissecting the high-frequency bias in convolutional neural networks (2021)
- Authors:
- USP affiliated authors: HIRATA JUNIOR, ROBERTO - IME ; ABELLO, ANTONIO AUGUSTO - IME
- Unidade: IME
- DOI: 10.1109/CVPRW53098.2021.00096
- Subjects: VISÃO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2021
- Source:
- Título: Proceedings
- Conference titles: Conference on Computer Vision and Pattern Recognition Workshops - CVPRW
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ABELLO, Antonio Augusto e HIRATA JÚNIOR, Roberto e WANG, Zhangyang. Dissecting the high-frequency bias in convolutional neural networks. 2021, Anais.. Piscataway: IEEE, 2021. Disponível em: https://doi.org/10.1109/CVPRW53098.2021.00096. Acesso em: 13 fev. 2026. -
APA
Abello, A. A., Hirata Júnior, R., & Wang, Z. (2021). Dissecting the high-frequency bias in convolutional neural networks. In Proceedings. Piscataway: IEEE. doi:10.1109/CVPRW53098.2021.00096 -
NLM
Abello AA, Hirata Júnior R, Wang Z. Dissecting the high-frequency bias in convolutional neural networks [Internet]. Proceedings. 2021 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/CVPRW53098.2021.00096 -
Vancouver
Abello AA, Hirata Júnior R, Wang Z. Dissecting the high-frequency bias in convolutional neural networks [Internet]. Proceedings. 2021 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/CVPRW53098.2021.00096 - Optimizing super resolution for face recognition
- Two studies on Convolutional Neural Networks sensibility to resolution
- Evaluation of transfer learning scenarios in plankton image classification
- Car detection in sequences of images of urban environments using mixture of deformable part models
- Combining features to a class-specific model in an instance detection framework
- Ridge linking using an adaptive oriented mask applied to plant root images with thin structures
- Parameter estimation for ridge detection in images with thin structures
- Segmentação de imagens por morfologia matemática
- A modeling approach for credit card fraud detection in electronic payment services
- Projeto de operadores morfológicos para imagens e sinais: abordagem de reticulados finitos discretos
Informações sobre o DOI: 10.1109/CVPRW53098.2021.00096 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3042384.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
