Performance evaluation of outlier rules for labelling outliers in multidimensional dataset (2021)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; SILVA, KELLY CRISTINA RAMOS DA - ICMC
- Unidade: ICMC
- DOI: 10.1504/IJBIDM.2021.117111
- Subjects: RECONHECIMENTO DE PADRÕES; MINERAÇÃO DE DADOS; ALGORITMOS ÚTEIS E ESPECÍFICOS
- Keywords: outlier detection; outlier rule; evaluation measure; boxplot; adjusted boxplot; k-NN
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: International Journal of Business Intelligence and Data Mining
- ISSN: 1743-8187
- Volume/Número/Paginação/Ano: v. 19, n. 2, p. 135-152, 2021
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SILVA, Kelly Cristina Ramos da e OLIVEIRA, Helder Luiz Costa de e CARVALHO, André Carlos Ponce de Leon Ferreira de. Performance evaluation of outlier rules for labelling outliers in multidimensional dataset. International Journal of Business Intelligence and Data Mining, v. 19, n. 2, p. 135-152, 2021Tradução . . Disponível em: https://doi.org/10.1504/IJBIDM.2021.117111. Acesso em: 21 maio 2025. -
APA
Silva, K. C. R. da, Oliveira, H. L. C. de, & Carvalho, A. C. P. de L. F. de. (2021). Performance evaluation of outlier rules for labelling outliers in multidimensional dataset. International Journal of Business Intelligence and Data Mining, 19( 2), 135-152. doi:10.1504/IJBIDM.2021.117111 -
NLM
Silva KCR da, Oliveira HLC de, Carvalho ACP de LF de. Performance evaluation of outlier rules for labelling outliers in multidimensional dataset [Internet]. International Journal of Business Intelligence and Data Mining. 2021 ; 19( 2): 135-152.[citado 2025 maio 21 ] Available from: https://doi.org/10.1504/IJBIDM.2021.117111 -
Vancouver
Silva KCR da, Oliveira HLC de, Carvalho ACP de LF de. Performance evaluation of outlier rules for labelling outliers in multidimensional dataset [Internet]. International Journal of Business Intelligence and Data Mining. 2021 ; 19( 2): 135-152.[citado 2025 maio 21 ] Available from: https://doi.org/10.1504/IJBIDM.2021.117111 - Robust outlier labeling rules for light-tailed and heavy-tailed Data
- Reduction strategies for hierarchical multi-label classification in protein function prediction
- Intelligent-guided adaptive search for the maximum covering location problem
- Clus-DTI: improving decision-tree classification with a clustering-based decision-tree induction algorithm
- A density-based clustering approach for behavior change detection in data streams
- Automatic selection of learning bias for active sampling
- Deep learning for biological image classification
- Mobile sensing and social computing [Editorial]
- Viabilidade do aprendizado ativo em máquinas extremas
- Multi-objective optimization applied to systematic conservation planning and spatial conservation priorities under climate change
Informações sobre o DOI: 10.1504/IJBIDM.2021.117111 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3040838_postprint.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas