Exportar registro bibliográfico


Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue (2021)

  • Authors:
  • Unidades: EEFE; IP
  • DOI: 10.1007/s00221-020-06003-6
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00221-020-06003-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RINALDIN, Carla Daniele Pacheco et al. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Experimental Brain Research, v. fe 2021, n. 2, p. 639-653, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00221-020-06003-6. Acesso em: 28 mar. 2023.
    • APA

      Rinaldin, C. D. P., Oliveira, J. A. de, Souza, C. R. de, Scheeren, E. M., Coelho, D. B., & Teixeira, L. A. (2021). Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Experimental Brain Research, fe 2021( 2), 639-653. doi:10.1007/s00221-020-06003-6
    • NLM

      Rinaldin CDP, Oliveira JA de, Souza CR de, Scheeren EM, Coelho DB, Teixeira LA. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue [Internet]. Experimental Brain Research. 2021 ; fe 2021( 2): 639-653.[citado 2023 mar. 28 ] Available from: https://doi.org/10.1007/s00221-020-06003-6
    • Vancouver

      Rinaldin CDP, Oliveira JA de, Souza CR de, Scheeren EM, Coelho DB, Teixeira LA. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue [Internet]. Experimental Brain Research. 2021 ; fe 2021( 2): 639-653.[citado 2023 mar. 28 ] Available from: https://doi.org/10.1007/s00221-020-06003-6

    Referências citadas na obra
    Abdi H (2010) The Greenhouse-Geisser correction. Encycl Res Des 1:544–548
    Adkin AL, Quant S, Maki BE, McIlroy WE (2006) Cortical responses associated with predictable and unpredictable compensatory balance reactions. Exp Brain Res 172:85. https://doi.org/10.1007/s00221-005-0310-9
    Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283. https://doi.org/10.1113/jphysiol.2008.163303
    Avela J, Kyrolainen H, Komi PV (1999) Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol 86:1283–1291. https://doi.org/10.1152/jappl.1999.86.4.1283
    Azzi NM, Coelho DB, Teixeira LA (2017) Automatic postural responses are generated according to feet orientation and perturbation magnitude. Gait Posture 57:172–176. https://doi.org/10.1016/j.gaitpost.2017.06.003
    Ball N, Scurr JC (2015) Task and intensity alters the RMS proportionality ratio in the triceps surae. Muscle Nerve 51:890–898. https://doi.org/10.1002/mus.24469
    Berger L, Regueme S, Forestier N (2010) Unilateral lower limb muscle fatigue induces bilateral effects on undisturbed stance and muscle EMG activities. J Electromyogr Kinesiol 20:947–952. https://doi.org/10.1016/j.jelekin.2009.09.006
    Blanca MJ, Alarcón R, Arnau J, Bono R, Bendayan R (2017) Non-normal data: is ANOVA still a valid option? Psicothema 29(4):552–557. https://doi.org/10.7334/psicothema2016.383
    Bloem B, Allum J, Carpenter M, Verschuuren J, Honegger F (2002) Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp Brain Res 142:91–107. https://doi.org/10.1007/s00221-001-0926-3
    Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 2:92–98
    Boyas S, Remaud A, Rivers E, Bilodeau M (2013) Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables. PLoS ONE 8:e72482
    Brasil-Neto JP, Cohen LG, Hallett M (1994) Central fatigue as revealed by post-exercise decrement of motor evoked potentials. Muscle Nerve 17:713–719. https://doi.org/10.1002/mus.880170702
    Carpentier A, Duchateau J, Hainaut K (2001) Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol 534:903–912. https://doi.org/10.1111/j.1469-7793.2001.00903.x
    Chaubet V, Paillard T (2012) Effects of unilateral knee extensor muscle fatigue induced by stimulated and voluntary contractions on postural control during bipedal stance. Neurophysiol Clin 42:377–383. https://doi.org/10.1016/j.neucli.2012.08.002
    Coelho DB, Teixeira LA (2017) Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses? Exp Brain Res 235(8):2375–2390. https://doi.org/10.1007/s00221-017-4980-x
    Coelho DB, Teixeira LA (2018) Disambiguating the cognitive and adaptive effects of contextual cues of an impending balance perturbation. Hum Mov Sci 61:90–98. https://doi.org/10.1016/j.humov.2018.07.008
    Coelho DB, Fernandes CA, Martinelli AR, Teixeira LA (2019) Right in comparison to left cerebral hemisphere damage by stroke induces poorer muscular responses to stance perturbation regardless of visual information. J Stroke Cerebrovasc Dis 28(4):954–962. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.021
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, New Jersey
    Cohen JW, Gallina A, Ivanova TD, Vieira T, McAndrew DJ, Garland SJ (2020) Regional modulation of the ankle plantarflexor muscles associated with standing external perturbations across different directions. Exp Brain Res 238(1):39–50. https://doi.org/10.1007/s00221-019-05696-8
    Davidson BS, Madigan ML, Nussbaum MA, Wojcik LA (2009) Effects of localized muscle fatigue on recovery from a postural perturbation without stepping. Gait Posture 29:552–557. https://doi.org/10.1016/j.gaitpost.2008.12.011
    de Lima-Pardini AC, Coelho DB, Silva MB, Azzi NM, Martinelli AR, Horak FB, Teixeira LA (2014) Aging increases flexibility of postural reactive responses based on constraints imposed by a manual task. Front Aging Neurosci 6:327. https://doi.org/10.3389/fnagi.2014.00327
    Dien J (2017) Best practices for repeated measures ANOVAs of ERP data: reference, regional channels, and robust ANOVAs. Int J Psychophysiol 111:42–56. https://doi.org/10.1016/j.ijpsycho.2016.09.006
    Doix A-CM, Lefèvre F, Colson SS (2013) Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS ONE 8:e64910. https://doi.org/10.1371/journal.pone.0064910
    Duchateau J, Hainaut K (1993) Behaviour of short and long latency reflexes in fatigued human muscles. J Physiol 471:787–799. https://doi.org/10.1113/jphysiol.1993.sp019928
    Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36:37–43. https://doi.org/10.1016/S0028-3932(97)00107-3
    Fernandes CA, Coelho DB, Martinelli AR, Teixeira LA (2018) Right cerebral hemisphere specialization for quiet and perturbed body balance control: evidence from unilateral stroke. Hum Mov Sci 57:374–387. https://doi.org/10.1016/j.humov.2017.09.015
    Fontes EB, Bortolotti H, da Costa KG, de Campos BM, Castanho GK, Hohl R, Noakes T, Min LL (2020) Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br J Sports Med 54:110–115. https://doi.org/10.1136/bjsports-2018-100295
    Forestier N, Teasdale N, Nougier V (2002) Alteration of the position sense at the ankle induced by muscular fatigue in humans. Med Sci Sports Exerc 34:117–122
    Garland SJ (1991) Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 435:547–558. https://doi.org/10.1113/jphysiol.1991.sp018524
    Garland SJ, Garner S, McComas A (1988) Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. J Physiol 401:547–556. https://doi.org/10.1113/jphysiol.1988.sp017178
    Garland S, Enoka R, Serrano L, Robinson G (1994) Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction. J Appl Physiol 76:2411–2419. https://doi.org/10.1152/jappl.1994.76.6.2411
    Geisser J, Greenhouse SW (1958) An extension of box’s results on the use of the F distribution in multivariate analysis. An Math Statist 29:855–891
    Harkins KM, Mattacola CG, Uhl TL, Malone TR, McCrory JL (2005) Effects of 2 ankle fatigue models on the duration of postural stability dysfunction. J Athl Train 40:191 (PMID: 16284640)
    Jiang Z, Wang X-F, Yue GH (2016) Strengthened corticosubcortical functional connectivity during muscle fatigue. Neural Plast id:1726848. doi: https://doi.org/10.1155/2016/1726848
    Keller M, Pfusterschmied J, Buchecker M, Müller E, Taube W (2012) Improved postural control after slackline training is accompanied by reduced H-reflexes. Scand J Med Sci Sports 22:471–477. https://doi.org/10.1111/j.1600-0838.2010.01268.x
    Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH (2003) Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. J Neurophysiol 90:300–312. https://doi.org/10.1152/jn.00821.2002
    Macefield G, Hagbarth K-E, Gorman R, Gandevia S, Burke D (1991) Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol 440:497–512. https://doi.org/10.1113/jphysiol.1991.sp018721
    Maeda RS, Gribble PL, Pruszynski JA (2020) Learning new feedforward motor commands based on feedback responses. Curr Biol 30(10):1941-1948.e3. https://doi.org/10.1016/j.cub.2020.03.005
    Marchetti PH, Orselli MI, Duarte M (2013) The effects of uni-and bilateral fatigue on postural and power tasks. J Appl Biomech 29:44–48. https://doi.org/10.1123/jab.29.1.44
    Marigold DS, Eng JJ, Inglis JT (2004) Modulation of ankle muscle postural reflexes in stroke: influence of weight-bearing load. Clin Neurophysiol 115:2789–2797. https://doi.org/10.1016/j.clinph.2004.07.002
    Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL (2006) Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. J Neurosci 26:4796–4802. https://doi.org/10.1523/JNEUROSCI.5487-05.2006
    Maurer C, Mergner T, Peterka R (2006) Multisensory control of human upright stance. Exp Brain Res 171:231. https://doi.org/10.1007/s00221-005-0256-y
    Meyer PF, Oddsson LI, De Luca CJ (2004) Reduced plantar sensitivity alters postural responses to lateral perturbations of balance. Exp Brain Res 157:526–536. https://doi.org/10.1007/s00221-004-1868-3
    Mierau A, Hülsdünker T, Strüder HK (2015) Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing. Front Behav Neurosci 9:272. https://doi.org/10.3389/fnbeh.2015.00272
    Mochizuki G, Ivanova T, Garland S (2004) Postural muscle activity during bilateral and unilateral arm movements at different speeds. Exp Brain Res 155:352–361. https://doi.org/10.1007/s00221-003-1732-x
    Monjo F, Forestier N (2014) Unexperienced mechanical effects of muscular fatigue can be predicted by the Central Nervous System as revealed by anticipatory postural adjustments. Exp Brain Res 232:2931–2943. https://doi.org/10.1007/s00221-014-3975-0
    Monjo F, Forestier N (2016) Muscle fatigue effects can be anticipated to reproduce a movement kinematics learned without fatigue. Neuroscience 339:100–108. https://doi.org/10.1016/j.neuroscience.2016.09.042
    Nardone A, Corra T, Schieppati M (1990) Different activations of the soleus and gastrocnemii muscles in response to various types of stance perturbation in man. Exp Brain Res 80:323–332
    Oude Nijhuis LB, Allum JH, Borm GF, Honegger F, Overeem S, Bloem BR (2009) Directional sensitivity of “first trial” reactions in human balance control. J Neurophysiol 101:2802–2814. https://doi.org/10.1152/jn.90945.2008
    Oude Nijhuis LB, Allum JH, Valls-Solé J, Overeem S, Bloem BR (2010) First trial postural reactions to unexpected balance disturbances: a comparison with the acoustic startle reaction. J Neurophysiol 104:2704–2712. https://doi.org/10.1152/jn.01080.2009
    Paillard T (2012) Effects of general and local fatigue on postural control: a review. Neurosci Biobehav Rev 36:162–176. https://doi.org/10.1016/j.neubiorev.2011.05.009
    Paillard T, Chaubet V, Maitre J, Dumitrescu M, Borel L (2010) Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb. Neurosci Res 68:301–306. https://doi.org/10.1016/j.neures.2010.08.004
    Paillard T, Lizin C, Rousseau M, Cebellan M (2014) Time to task failure influences the postural alteration more than the extent of muscles fatigued. Gait Posture 39:540–546. https://doi.org/10.1016/j.gaitpost.2013.09.005
    Pasma JH, Boonstra TA, Campfens SF, Schouten AC, Van der Kooij H (2012) Sensory reweighting of proprioceptive information of the left and right leg during human balance control. J Neurophysiol 108:1138–1148. https://doi.org/10.1152/jn.01008.2011
    Peters EJ, Fuglevand AJ (1999) Cessation of human motor unit discharge during sustained maximal voluntary contraction. Neurosci Lett 274:66–70. https://doi.org/10.1016/S0304-3940(99)00666-7
    Quant S, Adkin AL, Staines WR, Maki BE, McIlroy WE (2004) The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations. BMC Neurosci 5:18. https://doi.org/10.1186/1471-2202-5-18
    Rinaldin CDP, de Oliveira JA, Coelho DB, Scheeren EM, Teixeira LA (2020) Instantaneous interjoint rescaling and adaptation to balance perturbation under muscular fatigue. Eur J Neurosci 51(6):1478–1490. https://doi.org/10.1111/ejn.14606
    Ritzmann R, Freyler K, Werkhausen A, Gollhofer A (2016) Changes in balance strategy and neuromuscular control during a fatiguing balance task - a study in perturbed unilateral stance. Front Hum Neurosci 10:289. https://doi.org/10.3389/fnhum.2016.00289
    Santos MJ, Kanekar N, Aruin AS (2010) The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis J Electromyogr Kinesiol 20(3):388–397. https://doi.org/10.1016/j.jelekin.2009.06.006
    Shibuya K, Kuboyama N, Yamada S (2016) Complementary activation of the ipsilateral primary motor cortex during a sustained handgrip task. Eur J Appl Physiol 116:171–178. https://doi.org/10.1007/s00421-015-3262-1
    Singh T, Latash ML (2011) Effects of muscle fatigue on multi-muscle synergies. Exp Brain Res 214(3):335–350. https://doi.org/10.1007/s00221-011-2831-8
    Tang K-S, Honegger F, Allum J (2012) Movement patterns underlying first trial responses in human balance corrections. Neuroscience 225:140–151. https://doi.org/10.1016/j.neuroscience
    Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A (2006) Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol 101(2):420–429. https://doi.org/10.1152/japplphysiol.01447.2005
    Taylor JL, Butler JE, Gandevia SC (2000) Changes in muscle afferents, motoneurons and motor drive during muscle fatigue. Eur J Appl Physiol 83(2–3):106–115. https://doi.org/10.1007/s004210000269
    Teixeira LA, Maia Azzi N, de Oliveira JA, Ribeiro de Souza C, da Silva RL, Coelho DB (2020) Automatic postural responses are scaled from the association between online feedback and feedforward control. Eur J Neurosci 51:2023–2032. https://doi.org/10.1111/ejn.14625
    Thiele RM, Conchola E, Palmer T, De Freitas J, Thompson BJ (2015) The effects of a high-intensity free-weight back-squat exercise protocol on postural stability in resistance-trained males. J Sports Sci 33:211–218. https://doi.org/10.1080/02640414.2014.934709
    Van Duinen H, Renken R, Maurits N, Zijdewind I (2007) Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage 35:1438–1449. https://doi.org/10.1016/j.neuroimage.2007.02.008
    Vieira TM, Minetto MA, Hodson-Tole EF, Botter A (2013) How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane? Hum Mov Sci 32(4):753–767. https://doi.org/10.1016/j.humov.2013.03.003
    Vieira O, Coelho DB, Teixeira LA (2014) Asymmetric balance control between legs for quiet but not for perturbed stance. Exp Brain Res 232:3269–3276. https://doi.org/10.1007/s00221-014-4018-6
    Vollestad NK, Sejersted OM, Bahr R, Woods JJ, Bigland-Ritchie B (1988) Motor drive and metabolic responses during repeated submaximal contractions in human. J Appl Physiol 64(4):1421–1427
    Vuillerme N, Boisgontier M (2008) Muscle fatigue degrades force sense at the ankle joint. Gait Posture 28:521–524. https://doi.org/10.1016/j.gaitpost.2008.03.005
    Vuillerme N, Boisgontier M (2010) Changes in the relative contribution of each leg to the control of quiet two-legged stance following unilateral plantar–flexor muscles fatigue. Eur J Appl Physiol 110:207–213. https://doi.org/10.1007/s00421-010-1449-z
    Vuillerme N, Sporbert C, Pinsault N (2009) Postural adaptation to unilateral hip muscle fatigue during human bipedal standing. Gait Posture 30:122–125. https://doi.org/10.1016/j.gaitpost.2009.03.004
    Welch TD, Ting LH (2014) Mechanisms of motor adaptation in reactive balance control. PLoS ONE 9:e96440. https://doi.org/10.1371/journal.pone.0096440
    Wilson EL, Madigan ML, Davidson BS, Nussbaum MA (2006) Postural strategy changes with fatigue of the lumbar extensor muscles. Gait Posture 23:348–354. https://doi.org/10.1016/j.gaitpost.2005.04.005
    Woods J, Furbush F, Bigland-Ritchie B (1987) Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol 58:125–137. https://doi.org/10.1152/jn.1987.58.1.125

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2023