Exportar registro bibliográfico


Metrics:

Thermal Correction for Moho Depth Estimations on West Philippine Basin: a Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust (2020)

  • Authors:
  • Autor USP: SACEK, VICTOR - IAG
  • Unidade: IAG
  • DOI: 10.1007/s00024-020-02581-2
  • Subjects: GEOTECTÔNICA; LITOSFERA; TECTÔNICA DE PLACAS; GRAVIDADE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00024-020-02581-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CONSTANTINO, Renata Regina; SACEK, Victor. Thermal Correction for Moho Depth Estimations on West Philippine Basin: a Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust. Pure and Applied Geophysics, Basel, v. 177, n. 11, p. 5225-5236, 2020. Disponível em: < https://doi.org/10.1007/s00024-020-02581-2 > DOI: 10.1007/s00024-020-02581-2.
    • APA

      Constantino, R. R., & Sacek, V. (2020). Thermal Correction for Moho Depth Estimations on West Philippine Basin: a Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust. Pure and Applied Geophysics, 177( 11), 5225-5236. doi:10.1007/s00024-020-02581-2
    • NLM

      Constantino RR, Sacek V. Thermal Correction for Moho Depth Estimations on West Philippine Basin: a Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust [Internet]. Pure and Applied Geophysics. 2020 ; 177( 11): 5225-5236.Available from: https://doi.org/10.1007/s00024-020-02581-2
    • Vancouver

      Constantino RR, Sacek V. Thermal Correction for Moho Depth Estimations on West Philippine Basin: a Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust [Internet]. Pure and Applied Geophysics. 2020 ; 177( 11): 5225-5236.Available from: https://doi.org/10.1007/s00024-020-02581-2

    Referências citadas na obra
    Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis. https://www.ngdc.noaa.gov/mgg/global/global.html. Accessed 14 Oct 2018
    Bai, Y., Williams, S. E., Müller, R. D., Liu, Z., & Hosseinpour, M. (2014). Mapping crustal thickness using marine gravity data: Methods and uncertainties. Geophysics, 79(2), G1–G10.
    Braitenberg, C., & Zadro, M. (1999). Iterative 3D gravity inversion with integration of seismologic data. Bollettino di Geofisica Teorica e Applicata, 40(3), 4.
    Braitenberg, C., Pettenati, F., & Zadro, M. (1997). Spectral and classical methods in the evaluation of Moho undulations from gravity data: The NE Italian Alps and isostasy. Journal of Geodynamics, 23(1), 5–22.
    Braitenberg, C., Wienecke, S., & Wang, Y. (2006). Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research. https://doi.org/10.1029/2005JB003938.
    Braitenberg, C., Wienecke, S., Ebbing, J., Born, W., & Redfield, T. (2007). Joint gravity and isostatic analysis for basement studies–a novel tool. In: EGM 2007 International Workshop.
    Chappell, A. R., & Kusznir, N. J. (2008). Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174(1), 1–13.
    Chen, Y. J. (1992). Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8), 753–756.
    Constantino, R. R., Hackspacher, P. C., de Souza, I. A., & Costa, I. S. L. (2017). Basement structures over Rio Grande Rise from gravity inversion. Journal of South American Earth Sciences, 75, 85–91. https://doi.org/10.1016/j.jsames.2017.02.005.
    Constantino, R. R., Hackspacher, P. C., Costa, I. S. L., Molina, E. C., & De Souza, I. A. (2019). Gravity anomalies over extinct spreading centres: A new evidence of an aborted ridge in the South Atlantic Ocean. Geophysical Journal International, 217(1), 361–374. https://doi.org/10.1093/gji/ggz019.
    Crosby, A. G., McKenzie, D., & Sclater, J. G. (2006). The relationship between depth, age and gravity in the oceans. Geophysical Journal International, 166(2), 553–573.
    Divins, D. L. (2003). Total sediment thickness of the World's Oceans and Marginal Seas. Boulder: NOAA National Geophysical Data Center.
    Fullea, J., Fernandez, M., & Zeyen, H. (2008). FA2BOUG - A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone. Computers and Geosciences, 34(12), 1665–1681.
    Gómez-Ortiz, D., & Agarwal, B. N. (2005). 3DINVER. M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers and Geosciences, 31(4), 513–520.
    Hilde, T. W., & Chao-Shing, L. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102(1–4), 85–104.
    Jaupart, C., Mareschal, J. C., & Watts, A. B. (2007). Heat flow and thermal structure of the lithosphere. Treatise on Geophysics, 6, 217–252.
    Jonas, J., Hall, S., & Casey, J. F. (1991). Gravity anomalies over extinct spreading centers: A test of gravity models of active centers. Journal of Geophysical Research, 96(B7), 11759–11777.
    Kaban, M. K., Schwintzer, P., Artemieva, I. M., & Mooney, W. D. (2002). Density of the continental roots: Compositional and thermal contributions. Earth and Planetary Science Letters, 209(1–2), 53–69.
    Kende, J., Henry, P., Bayrakci, G., Özeren, M. S., & Grall, C. (2017). Moho depth and crustal thinning in the Marmara Sea region from gravity data inversion. Journal of Geophysical Research, 122(2), 1381–1401.
    Kusznir, N. J., Roberts, A. M., & Alvey, A. D. (2018). Crustal structure of the conjugate Equatorial Atlantic Margins, derived by gravity anomaly inversion. London: Geological Society London, Special Publications.
    Lambeck, K. (1972). Gravity anomalies over ocean ridges. Geophysical Journal International, 30(1), 37–53. https://doi.org/10.1111/j.1365246X.1972.tb06178.x.
    Lewis, B. T. (1983). The process of formation of ocean crust. Science, 220(4593), 151–157. https://doi.org/10.1126/science.220.4593.151.
    Lewis, S. D., & Hayes, D. E. (1980). The structure and evolution of the central basin fault, West Philippine Basin. The tectonic and geologic evolution of southeast asian seas and islands (pp. 77–88). Washington: American Geophysical Union.
    MacLeod, S. J., Williams, S. E., Matthews, K. J., Müller, R. D., & Qin, X. (2017). A global review and digital database of large-scale extinct spreading centers. Geosphere, 13(3), 911–949.
    Minshull, T. A., & White, R. S. (1996). Thin crust on the flanks of the slow-spreading Southwest Indian Ridge. Geophysical Journal International, 125(1), 139–148.
    Mrozowski, C. L., Lewis, S. D., & Hayes, D. E. (1982). Complexities in the tectonic evolution of the West Philippine Basin. Tectonophysics, 82(1–2), 1–24.
    Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry Geophysics Geosystems. https://doi.org/10.1029/2007GC001743.
    Nishizawa, A., Kaneda, K., & Oikawa, M. (2016). Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate. Earth, Planets and Space, 68(1), 30.
    Okino, K., & Fujioka, K. (2003). The central basin spreading center in the Philippine Sea: Structure of an extinct spreading center and implications for marginal basin formation. Journal of Geophysical Research. https://doi.org/10.1029/2001JB001095.
    Parker, R. L. (1972). The rapid calculation of potential anomalies. Geophysical Journal International, 31(4), 447–455.
    Paulatto, M., Watts, A. B., & Peirce, C. (2014). Potential field and bathymetric investigation of the Monowai volcanic centre, Kermadec Arc: Implications for caldera formation and volcanic evolution. Geophysical journal international, 197(3), 1484–1499.
    Perez-Díaz, L., & Eagles, G. (2017). A new high-resolution seafloor age grid for the South Atlantic. Geochemistry Geophysics Geosystems, 181, 457–470.
    Reid, I., & Jackson, H. R. (1981). Oceanic spreading rate and crustal thickness. Marine Geophysical Researches, 5, 165. https://doi.org/10.1007/BF00163477.
    Russo, R. M., & Speed, E. R. (1994). Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad. Tectonics, 13(3), 613–622. https://doi.org/10.1029/94TC00052.
    Sampietro, D., Capponi, M., Triglione, D., Mansi, A. H., Marchetti, P., & Sansò, F. (2016). GTE: A new software for gravitational terrain effect computation: Theory and performances. Pure and Applied Geophysics, 173(7), 2435–2453.
    Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213.
    Sasaki, T., Yamazaki, T., & Ishizuka, O. (2014). A revised spreading model of the West Philippine Basin. Earth, Planets and Space, 66(1), 83.
    Shih, T. C. (1980). Marine magnetic anomalies from the western Philippine Sea: Implications for the evolution of marginal basins. GMS, 23, 49–75.
    Stein, C. A. (2018). Geophysical heat flow. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.11293-X.
    Tenzer, R., & Chen, W. (2014). Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Science Informatics, 7(4), 265–276.
    Tiberi, C., Diament, M., Lyon Caen, H., & King, T. (2001). Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophysical Journal International, 145(3), 797–808.
    Tirel, C., Gueydan, F., Tiberi, C., & Burn, J. P. (2004). Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth and Planetary Science Letters, 228(3–4), 267–280.
    Tucholke, B. E., & Lin, J. (1994). A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6), 11937–11958.
    Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd edition) (p. 472). Cambridge: Cambridge University Press.
    Uyeda, S., & Miyashiro, A. (1974). Plate tectonics and the Japanese Islands: A synthesis. Geological Society of America Bulletin, 85(7), 1159–1170.
    Welford, J. K., & Hall, J. (2013). Lithospheric structure of the Labrador Sea from 855 constrained 3-D gravity inversion. Geophysical Journal International, 195(2), 767–784.
    Wessel, P., & Smith, W. H. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72(41), 441–446.
    Yen, H. Y., Lo, Y. T., Yeh, Y. L., Hsieh, H. H., Chang, W. Y., Chen, C. H., et al. (2015). The crustal thickness of the philippine sea plate derived from gravity data. Terrestrial, Atmospheric and Oceanic Sciences, 26(3), 253.
    Zhang, F., Lin, J., Zhang, X., Ding, W., Wang, T., & Zhu, J. (2018). Asymmetry in oceanic crustal structure of the South China Sea basin and its implications on mantle geodynamics. International Geology Review. https://doi.org/10.1080/00206814.2018.1425922.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021