Clinical data that matters: a distillation of neuro-oncology clinical trial inclusion criteria using machine learning (2019)
- Authors:
- Autor USP: NOUSHMEHR, HOUTAN - FMRP
- Unidade: FMRP
- DOI: 10.1093/neuonc/noz175.558
- Subjects: ENSAIO CLÍNICO; MENINGIOMA; GLÂNDULA PITUITÁRIA; NEOPLASIAS CEREBRAIS; ASTROCITOMA
- Language: Inglês
- Imprenta:
- Publisher: Society for Neuro-Oncology
- Publisher place: Oxford
- Date published: 2019
- Source:
- Título: Neuro-oncology
- ISSN: 1522-8517
- Volume/Número/Paginação/Ano: v. 21, suppl. 6, res. INNV-15, p. vi133, 2019
- Conference titles: Annual Scientific Meeting and Education Day of the Society for Neuro-Oncology
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
SNYDER, James et al. Clinical data that matters: a distillation of neuro-oncology clinical trial inclusion criteria using machine learning. Neuro-oncology. Oxford: Society for Neuro-Oncology. Disponível em: https://doi.org/10.1093/neuonc/noz175.558. Acesso em: 27 dez. 2025. , 2019 -
APA
Snyder, J., Wells, M., Poisson, L., Kalkanis, S., Noushmehr, H., & Robin, A. (2019). Clinical data that matters: a distillation of neuro-oncology clinical trial inclusion criteria using machine learning. Neuro-oncology. Oxford: Society for Neuro-Oncology. doi:10.1093/neuonc/noz175.558 -
NLM
Snyder J, Wells M, Poisson L, Kalkanis S, Noushmehr H, Robin A. Clinical data that matters: a distillation of neuro-oncology clinical trial inclusion criteria using machine learning [Internet]. Neuro-oncology. 2019 ; 21 vi133.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1093/neuonc/noz175.558 -
Vancouver
Snyder J, Wells M, Poisson L, Kalkanis S, Noushmehr H, Robin A. Clinical data that matters: a distillation of neuro-oncology clinical trial inclusion criteria using machine learning [Internet]. Neuro-oncology. 2019 ; 21 vi133.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1093/neuonc/noz175.558 - Integrative analysis identifies functional prostate cancer risk SNPs in genomic regulatory regions defined as enhancers
- Genome-wide fingerprinting of regulatory chromatin to evaluate the tissue specific origins of high-grade serous ovarian cancer
- Epigenomic (DNA methylation and expression) signatures define subsets of both IDHmut and IDHwt glioma with distinct clinical outcomes
- Molecular patterns at regulatory elements diferentially methylated in glioma
- Genomic landscape of idh-mutant primary glioblastomas shows distinct clinical and molecular features and that CDKN2A should be supplemented with MGMTp and G-CIMP for precise prognostication
- Tumor-myeloid cell interactions are dynamic and influence the evolutionary trajectory of adult diffuse glioma
- DNA methylation signature associated with risk of recurrence in papillary thyroid carcinoma
- DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management
- SpidermiR: an R/Bioconductor package for integrative analysis with miRNA data
- Epigenomic glioma subtype evaluation across 31 tumor types
Informações sobre o DOI: 10.1093/neuonc/noz175.558 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
