Exportar registro bibliográfico


Metrics:

Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study (2020)

  • Authors:
  • Autor USP: GOUVEIA, NELSON DA CRUZ - FM
  • Unidade: FM
  • DOI: 10.1007/s11524-018-00326-0
  • Subjects: INQUÉRITOS EPIDEMIOLÓGICOS; MORTALIDADE; CIDADES; SAÚDE URBANA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11524-018-00326-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      QUISTBERG, D. Alex; ROUX, Ana V. Diez; BILAL, Usama; et al. Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study. Journal of urban health-bulletin of the new york academy of medicine, New York, v. 96, n. 2, p. 311-337, 2020. Disponível em: < https://observatorio.fm.usp.br/handle/OPI/36979 > DOI: 10.1007/s11524-018-00326-0.
    • APA

      Quistberg, D. A., Roux, A. V. D., Bilal, U., Moore, K., Ortigoza, A., Rodriguez, D. A., et al. (2020). Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study. Journal of urban health-bulletin of the new york academy of medicine, 96( 2), 311-337. doi:10.1007/s11524-018-00326-0
    • NLM

      Quistberg DA, Roux AVD, Bilal U, Moore K, Ortigoza A, Rodriguez DA, Sarmiento OL, Frenz P, Friche AA, Gouveia N da C. Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study [Internet]. Journal of urban health-bulletin of the new york academy of medicine. 2020 ; 96( 2): 311-337.Available from: https://observatorio.fm.usp.br/handle/OPI/36979
    • Vancouver

      Quistberg DA, Roux AVD, Bilal U, Moore K, Ortigoza A, Rodriguez DA, Sarmiento OL, Frenz P, Friche AA, Gouveia N da C. Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study [Internet]. Journal of urban health-bulletin of the new york academy of medicine. 2020 ; 96( 2): 311-337.Available from: https://observatorio.fm.usp.br/handle/OPI/36979

    Referências citadas na obra
    Population Division of the Department of Economic and Social Affairs. 2017 Revision of World Population Prospects: United Nations. New York, NY; 2017.
    Singh S, Beagley J. Health and the New Urban Agenda: a mandate for action. Lancet. 2017;389(10071):801–2.
    United Nations Human Settlements Programme (UN-Habitat). Urbanization and Development: Emerging Futures - World Cities Report 2016: United Nations. Nairobi, Kenya; 2016. HS/038/16E.
    Galea S, Freudenberg N, Vlahov D. Cities and population health. Soc Sci Med. Mar 2005;60(5):1017–33.
    Harpham T. Urban health in developing countries: what do we know and where do we go? Health Place. 2009;15(1):107–16.
    Rydin Y, Bleahu A, Davies M, Dávila JD, Friel S, de Grandis G, et al. Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet. Jun 2012;379(9831):2079–108.
    Tsounta E, Osueke A. What is behind Latin America’s declining income inequality?; 2014. IMF Working Paper. Available at: https://www.imf.org/external/pubs/ft/wp/2014/wp14124.pdf . Accessed 23 March 2018.
    World Development book case study: sustainable urban development in Curitiba. 2016. Available at: https://newint.org/books/reference/world-development/case-studies/sustainable-urban-development-curitiba/ . Accessed 23 March 2018.
    Cerda M, Morenoff JD, Hansen BB, et al. Reducing violence by transforming neighborhoods: a natural experiment in Medellin, Colombia. Am J Epidemiol. 2012;175(10):1045–53.
    Gomez LF, Sarmiento R, Ordoñez MF, et al. Urban environment interventions linked to the promotion of physical activity: a mixed methods study applied to the urban context of Latin America. Social Science & Medicine. 2015;131:18–30.
    Jirón P. Sustainable Urban Mobility in Latin America. Nairobi: UN Habitat; 2013. http://unhabitat.org/wpcontent/uploads/2013/06/GRHS.2013.Regional.Latin_.America.and_.Caribbean.pdf . Accessed 23 March 2018.
    Mc GJ. Radical cities: across Latin America in search of a new architecture. London: Verso Books; 2015.
    Diez Roux AV, Slesinski SC, Alazraqui M, et al. A novel international partnership for actionable evidence on urban health in latin America: LAC-urban health and SALURBAL. Global Challenges. 2018;0(0):1800013.
    Angel S, Blei AM, Parent J, et al. Atlas of urban expansion—2016 edition, Volume 1: Areas and Densities, New York: New York University, Nairobi: UN- Habitat, and Cambridge, MA: Lincoln Institute of Land Policy; 2016.
    Frey WH, Zimmer Z. Defining the city. In: Paddison R, editor. Handbook of urban studieS. London: Sage Publications; 2001. p. 14–35.
    Parr JB. Spatial definitions of the city: four perspectives. Urban Stud. 2007;44(2):381–92.
    Beenackers MA, Doiron D, Fortier I, et al. MINDMAP: establishing an integrated database infrastructure for research in ageing, mental well-being, and the urban environment. BMC Public Health. 2018;18(1):158.
    Population Division of the Department of Economic and Social Affairs. The world’s cities in 2016 - data booklet. New York, New York: United Nations; 2016.
    Fang C, Yu D. Urban agglomeration: an evolving concept of an emerging phenomenon. Landsc Urban Plann. 2017;162:126–36.
    European Environment Agency. Urban atlas. Copenhagen: European Union; 2010.
    Cottineau C, Hatna E, Arcaute E, Batty M. Diverse cities or the systematic paradox of urban scaling laws. Computers, Environment Urban Syst. 2017;63:80–94.
    Arcaute E, Hatna E, Ferguson P, Youn H, Johansson A, Batty M. Constructing cities, deconstructing scaling laws. J R Soc Interface. 2015;12(102):20140745.
    Keola S, Andersson M, Hall O. Monitoring economic development from space: using nighttime light and land cover data to measure economic growth. World Development. 2015;66:322–34.
    Potere D, Schneider A, Angel S, Civco DL. Mapping urban areas on a global scale: which of the eight maps now available is more accurate? Int J Remote Sens. 2009;30(24):6531–58.
    Dirección Corporativa de Análisis Económico y Conocimiento para el Desarrollo. Crecimiento urbano y acceso a oportunidades: un desafío para América Latina. Bogota: CAF; 2017.
    Brinkhoff T. City population. Available at: http://citypopulation.de/ . Accessed 1 March, 2017.
    Patiño Villa CA, Zambrano Pantoja F, García Mora D, Hernández Fernández HA. Debates de Gobierno Urbano es una publicación seriada del Instituto de Estudios Urbanos de la Universidad Nacional de Colombia, Sede Bogotá. Bogota DC, Colombia: Instituto de Estudios Urbanos; 2016.
    Esch T, Thiel M, Schenk A, Roth A, Muller A, Dech S. Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Trans Geosci Remote Sens. 2010;48(2):905–16.
    Esch T, Heldens W, Hirner A, et al. Breaking new ground in mapping human settlements from space—the Global Urban Footprint. ISPRS J Photogramm Remote Sens. 2017;134:30–42.
    Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S. Monitoring urbanization in mega cities from space. Remote Sens Environ. 2012;117:162–76.
    Logan JR, Xu Z, Stults BJ. Interpolating U.S. decennial census tract data from as early as 1970 to 2010: a longitudinal tract database. Prof Geogr. 2014;66(3):412–20.
    Logan JR, Stults BJ, Xu Z. Validating population estimates for harmonized census tract data, 2000–2010. Ann Am Assoc Geogr. 2016;106(5):1013–29.
    Minnesota Population Center. Integrated Public Use Microdata Series, International: Version 7.0 Minneapolis, MN; 2018.
    Division of Evidence and Research - Department of Information. WHO methods and data sources for country-level causes of death 2000–2015. Geneva: World Health Organization; 2017.
    Mindell JS, Moody A, Vecino-Ortiz AI, Alfaro T, Frenz P, Scholes S, et al. Comparison of health examination survey methods in Brazil, Chile, Colombia, Mexico, England, Scotland, and the United States. Am J Epidemiol. 2017;186(6):648–58.
    Song L, Mercer L, Wakefield J, Laurent A, Solet D. Using small-area estimation to calculate the prevalence of smoking by subcounty geographic areas in King County, Washington, Behavioral Risk Factor Surveillance System, 2009-2013. Prev Chronic Dis. 2016;13:E59.
    Zhang X, Holt JB, Lu H, et al. Multilevel regression and poststratification for small-area estimation of population health outcomes: a case study of chronic obstructive pulmonary disease prevalence using the Behavioral Risk Factor Surveillance System. Am J Epidemiol. 2014;179(8):1025–33.
    Zhang X, Holt JB, Yun S, Lu H, Greenlund KJ, Croft JB. Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the Behavioral Risk Factor Surveillance System. Am J Epidemiol. 2015;182(2):127–37.
    Zhang Z, Zhang L, Penman A, May W. Using small-area estimation method to calculate county-level prevalence of obesity in Mississippi, 2007–2009. Prev Chronic Dis. 2011;8(4):A85.
    Chen C, Wakefield J, Lumely T. The use of sampling weights in Bayesian hierarchical models for small area estimation. Spatial Spatio-temporal Epidemiol. 2014;11(Supplement C):33–43.
    Mercer L, Wakefield J, Chen C, Lumley T. A comparison of spatial smoothing methods for small area estimation with sampling weights. Spatial Statist. 2014;8(Supplement C):69–85.
    Rabe-Hesketh S, Skrondal A. Multilevel modelling of complex survey data. J R Stat Soc Ser A (Statistics in Society). 2006;169(4):805–27.
    Lovasi GS, Fink DS, Mooney SJ, Link BG. Model-based and design-based inference goals frame how to account for neighborhood clustering in studies of health in overlapping context types. SSM - Population Health. 2017;3(Supplement C):600–8.
    Jeffers K, King M, Cleveland L, Kelly HP. Data resource profile: IPUMS-International. Int J Epidemiol. 2017;46(2):390–1.
    Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System. US Department of Health and Human Services. Available at: https://www.cdc.gov/brfss/ . Accessed 23 March 2018.
    Teresi JA, Fleishman JA. Differential item functioning and health assessment. Qual Life Res. 2007;16(1):33–42.
    Smith SJ, Steinberg KK, Thacker SB. Methods for pooled analyses of epidemiologic studies. Epidemiology. 1994;5(3):381.
    Smith-Warner SA, Spiegelman D, Ritz J, Albanes D, Beeson WL, Bernstein L, et al. Methods for pooling results of epidemiologic studiesthe pooling project of prospective studies of diet and cancer. Am J Epidemiol. 2006;163(11):1053–64.
    Tang L, Song PXK. Fused lasso approach in regression coefficients clustering - learning parameter heterogeneity in data integration. J Mach Learn Res. 2016;17:1–23.
    Centers for Disease Control and Prevention. Indicator definitions—diabetes. Atlanta, GA: US Department of Human and Health Services; 2018.
    Diabetes Programme. Global report on diabetes. Geneva, Switzerland: World Health Organization; 2016.
    Dept. of Noncommunicable Disease Surveillance. Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva, Switzerland: World Health Organization; 1999.
    Centers for Disease Control and Prevention. Indicator definitions—cardiovascular disease. Atlanta, GA: US Department of Human and Health Services; 2018.
    Zhou B, Bentham J, Di Cesare M, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389(10064):37–55.
    Norm C, Pedro O, JM G, et al. Implementing standardized performance indicators to improve hypertension control at both the population and healthcare organization levels. J Clin Hypertens. 2017;19(5):456–61.
    OECD. Health at a glance 2017: OECD indicators. Paris: OECD Publishing; 2017. https://doi.org/10.1787/health_glance-2017-en .
    Centers for Disease Control and Prevention. Surveillance of certain health behaviors and conditions among states and selected local areas―Behavioral Risk Factor Surveillance System (BRFSS). MMWR Surveillance Summary. 2008;57(SS–7):2–3,11.
    Centers for Disease Control and Prevention. Indicator definitions—tobacco. Atlanta, GA: US Department of Human and Health Services; 2018.
    Global Tobacco Surveillance System (GTSS). Global adult tobacco survey (GATS) indicator guidelines: definition and Syntax. Geneva, Switzerland: World Health Organization; 2009.
    Centers for Disease Control and Prevention. Indicator definitions—alcohol. Atlanta, GA: US Department of Human and Health Services; 2018.
    World Health Organization. Global status report on alcohol and health. Geneva: WHO; 2011.
    World Health Organization. BMI classification. World Health Organization. Available at: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html . Accessed 10 May, 2018.
    International Physical Activity Questionnaire Group. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ) – Short and Long Forms. Available at: https://sites.google.com/site/theipaq/ . Accessed 23 March 2018.
    Prevention of Noncommunicable Diseases Department SaP-BP. Global Physical Activity Questionnaire (GPAQ) Analysis Guide. World Health Organization. Available at: http://www.who.int/ncds/surveillance/steps/GPAQ/en/ . Accessed 23 March 2018.
    World Health Organization. Measuring the intake of fruit and vegetables. World Health Organization. Available at: http://www.who.int/dietphysicalactivity/fruit/en/ . Accessed 23 March 2018.
    National Cancer Institute. Dietary Assessment Primer: Food Frequency Questionnaire at a Glance. Available at: https://dietassessmentprimer.cancer.gov/profiles/questionnaire/ . Accessed 10 May, 2018.
    Centers for Disease Control and Prevention. Indicator definitions—nutrition, physical activity, and weight status. Atlanta, GA: US Department of Human and Health Services; 2018.
    CAF Banco de Desarollo de América Latina. Encuesta CAF 2016. Available at: https://www.caf.com/es/temas/i/investigacion-para-el-desarrollo/encuesta-caf/ . Accessed 23 March 2018.
    Wardrop NA, Jochem WC, Bird TJ, Chamberlain HR, Clarke D, Kerr D, et al. Spatially disaggregated population estimates in the absence of national population and housing census data. Proc Natl Acad Sci. 2018;115:3529–37.
    Boeing G. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput Environ Urban Syst. 2017;65:126–39.
    van Donkelaar A, Martin RV, Brauer M, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ Sci Technol. 2016;50(7):3762–72.
    Boys BL, Martin RV, van Donkelaar A, et al. Fifteen-year global time series of satellite-derived fine particulate matter. Environ Sci Technol. 2014;48(19):11109–18.
    Av D, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect. 2015;123(2):135–43.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021