Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning (2021)
- Authors:
- USP affiliated authors: OLIVEIRA JUNIOR, OSVALDO NOVAIS DE - IFSC ; SHIMIZU, FLÁVIO MAKOTO - IFSC
- Unidade: IFSC
- DOI: 10.1016/j.snb.2021.129696
- Subjects: APRENDIZADO COMPUTACIONAL; NANOTECNOLOGIA; CIÊNCIA; FUTURO; LÍNGUA
- Keywords: rGO; Machine learning; XGBoost; Electronic tongue; Endocrine; MoS2; Information visualization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Sensors and Actuators B
- ISSN: 0925-4005
- Volume/Número/Paginação/Ano: v. 336, p. 129696-1-129696-11, June 2021
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CHRISTINELLI, Wania A. et al. Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning. Sensors and Actuators B, v. 336, p. 129696-1-129696-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.snb.2021.129696. Acesso em: 27 dez. 2025. -
APA
Christinelli, W. A., Shimizu, F. M., Facure, M. H. M., Cerri, R., Oliveira Junior, O. N. de, Correa, D. S., & Mattoso, L. H. C. (2021). Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning. Sensors and Actuators B, 336, 129696-1-129696-11. doi:10.1016/j.snb.2021.129696 -
NLM
Christinelli WA, Shimizu FM, Facure MHM, Cerri R, Oliveira Junior ON de, Correa DS, Mattoso LHC. Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning [Internet]. Sensors and Actuators B. 2021 ; 336 129696-1-129696-11.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1016/j.snb.2021.129696 -
Vancouver
Christinelli WA, Shimizu FM, Facure MHM, Cerri R, Oliveira Junior ON de, Correa DS, Mattoso LHC. Two-dimensional MoS2-based impedimetric electronic tongue for the discrimination of endocrine disrupting chemicals using machine learning [Internet]. Sensors and Actuators B. 2021 ; 336 129696-1-129696-11.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1016/j.snb.2021.129696 - Impedimetric electronic tongue based on poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) films decorated with silver nanoparticles
- Graphene-containing microfluidic and chip-based sensor devices for biomolecules
- Dynamic behavior of surface-enhanced raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions
- Improved antibody loading on self-assembled graphene oxide films for using in surface plasmon resonance immunosensors
- Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors
- Electronic nose based on carbon nanocomposite sensors for clove essential oil detection
- Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors
- Role of sphingomyelin on the interaction of the anticancer drug gemcitabine hydrochloride with cell membrane models
- Genosensor made with a self-assembled monolayer matrix to detect MGMT gene methylation in head and neck cancer cell lines
- A highly specific and sensitive nanoimmunosensor for the diagnosis of neuromyelitis optica spectrum disorders
Informações sobre o DOI: 10.1016/j.snb.2021.129696 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3024970.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
