Data science: measuring uncertainties (2021)
- Authors:
- Autor USP: PEREIRA, CARLOS ALBERTO DE BRAGANCA - IME
- Unidade: IME
- Subjects: BIG DATA; APRENDIZADO COMPUTACIONAL; MINERAÇÃO DE DADOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- ISBN: 9783036507934
-
ABNT
Data science: measuring uncertainties. . Basel: MDPI. Disponível em: https://www.mdpi.com/1099-4300/22/12/1438/pdf. Acesso em: 30 maio 2025. , 2021 -
APA
Data science: measuring uncertainties. (2021). Data science: measuring uncertainties. Basel: MDPI. Recuperado de https://www.mdpi.com/1099-4300/22/12/1438/pdf -
NLM
Data science: measuring uncertainties [Internet]. 2021 ;[citado 2025 maio 30 ] Available from: https://www.mdpi.com/1099-4300/22/12/1438/pdf -
Vancouver
Data science: measuring uncertainties [Internet]. 2021 ;[citado 2025 maio 30 ] Available from: https://www.mdpi.com/1099-4300/22/12/1438/pdf - Entropy
- Exact tests for equality of two proportions: Fisher v Bayes
- On identifiability of parametric statistical models
- Bayesian methods for categorical data under informative general censoring
- Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia
- Predictive analysis of microarray data
- Bayesian semiparametric symmetric models for binary data
- Revista Brasileira de Biometria
- Parallel systems using the Weibull model
- Dominant lethal effect of 60Co gamma radiation in Biomphalaria glabrata (SAY, 1818)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3024703.pdf | Direct link | ||
3024703.pdf | Direct link | ||
3024703.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas