Exportar registro bibliográfico


Metrics:

Photocatalytic activity of Pr-modified TiO2 for the degradation of bisphenol A (2021)

  • Authors:
  • USP affiliated authors: HEWER, THIAGO LEWIS REIS - EP ; CORIO, PAOLA - IQ ; FREIRE, RENATO SANCHES - IQ ; CORDEIRO, DENISE DE SALES - IQ
  • Unidades: EP; IQ
  • DOI: 10.1007/s42452-021-04284-2
  • Subjects: NANOPARTÍCULAS; FOTOCATÁLISE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s42452-021-04284-2 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CORDEIRO, Denise de Sales; CÁSSIO, Fernando Luiz; CICCOTTI, Larissa; et al. Photocatalytic activity of Pr-modified TiO2 for the degradation of bisphenol A. SN Applied Sciences, Basel, v. 3, p. 1-8 art. 258, 2021. Disponível em: < http://dx.doi.org/10.1007/s42452-021-04284-2 > DOI: 10.1007/s42452-021-04284-2.
    • APA

      Cordeiro, D. de S., Cássio, F. L., Ciccotti, L., Hewer, T. L. R., Corio, P., & Freire, R. S. (2021). Photocatalytic activity of Pr-modified TiO2 for the degradation of bisphenol A. SN Applied Sciences, 3, 1-8 art. 258. doi:10.1007/s42452-021-04284-2
    • NLM

      Cordeiro D de S, Cássio FL, Ciccotti L, Hewer TLR, Corio P, Freire RS. Photocatalytic activity of Pr-modified TiO2 for the degradation of bisphenol A [Internet]. SN Applied Sciences. 2021 ; 3 1-8 art. 258.Available from: http://dx.doi.org/10.1007/s42452-021-04284-2
    • Vancouver

      Cordeiro D de S, Cássio FL, Ciccotti L, Hewer TLR, Corio P, Freire RS. Photocatalytic activity of Pr-modified TiO2 for the degradation of bisphenol A [Internet]. SN Applied Sciences. 2021 ; 3 1-8 art. 258.Available from: http://dx.doi.org/10.1007/s42452-021-04284-2

    Referências citadas na obra
    Sharma A, Mollier J, Brocklesby RWK, Caves J, Jayasena CN, Minhas S (2020) Endocrine-disrupting chemicals and male reproductive health. Reprod Med Biol 19:243
    Selvaraju V, Baskaran S, Agarwal A, Henkel R (2020) Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 5:e13646
    Kim JJ, Kumar S, Kumar V, Lee YM, Kim YS, Kumar V (2020) Bisphenols as a Legacy Pollutant, and their effects on organ vulnerability. Int J Environ Res Public Health 17:112
    Su C, Cui Y, Liu D, Zhang H, Baninla Y (2020) Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: which chemicals are the prioritized ones? Sci Total Environ 720:137652
    Abraham A, Chakraborty P (2020) A review on sources and health impacts of bisphenol A. Rev Environ Health 35:201
    Akash MSH, Sabir S, Rehman K (2020) Bisphenol A-induced metabolic disorders: from exposure to mechanism of action. Environ Toxicol Phar 77:103373
    Gonsioroski A, Mourikes VE, Flaws JA (2020) Endocrine disruptors in water and their effects on the reproductive system. Int J Mol Sci 21:1929
    Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B (2019) A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. Environ Sci Pollut Res 26:8459
    Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274
    Wang H, Liu ZH, Zhang J, Huang RP, Yin H, Dang Z, Wu PX, Liu Y (2019) Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Sci Total Environ 692:107
    Ghatak HR (2014) Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Tech 44:1167
    Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. a review. Crit Rev Environ Sci Tech 44:2577
    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B Environ 49:1
    Khki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manage 198:78
    X. Chen, X S.S Mao, Chem. Rev. 2007, 107, 2891.
    Chen DJ, Cheng YL, Zhou N, Chen P, Wang YP, Li K, Huo SH, Cheng PF, Peng P, Zhang RC, Wang L, Liu H, Liu Y, Ruan R (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725
    Karthikeyan C, Arunachalam P, Ramachandran K, Al-Mayouf AM, Karuppuchamy S (2020) Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J Alloys Compd 828:154281
    Li RX, Li T, Zhou QX (2020) Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—a review. Catalysts 10:804
    Saif M, Abdel-Mottaleb MSA (2007) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications. Inorganica Chim Acta 360:2863
    Su W, Chen J, Wu L, Wang X, Wang X, Fu X (2008) Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method. Appl Catal B Environ 77:264
    Xu A-W, Gao Y, Liu H-Q (2002) The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal 207:151
    Mazierski P, Mikolajczyk A, Bajorowicz B, Malankowska A, Zaleska-Medynska A, Nadolna J (2018) The role of lanthanides in TiO2-based photocatalysis: a review. Appl Catal B Environ 233:301
    Li FB, Li XZ, Ao CH, Lee SC, Hou MF (2005) Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification. Chemosphere 59:787
    Hewer TLR, Souza ECC, Martins TS, Muccillo ENS, Freire RS (2011) Influence of neodymium ions on photocatalytic activity of TiO2 synthesized by sol–gel and precipitation methods. J Mol Catal A Chem 336:58
    Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481
    Hewer TLR, Machado BC, Freire RS, Guardani R (2014) Ag3PO4 sunlight-induced photocatalyst for degradation of phenol. RSC Adv 65:34674
    Velardi L, Scrimieri L, Serra A, Manno D, Calcagnile L (2020) Effect of temperature on the physical, optical and photocatalytic properties of TiO2 nanoparticles. SN Appl Sci 2:707
    Bergamonti L, Alfieri I, Lorenzi A, Montenero A, Predieri G, Di Maggio R, Girardi F, Lazzarini L, Lottici PP (2015) Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. J Sol-Gel Sci Technol 73:91
    Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek K, Jirkovsky J, Petrova N (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem 16:1709
    Katal R, Masudy-Panah S, Tanhaei M, Farahani MHDA, Hu JY (2020) A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem Eng J 384:123384
    Romero DD, Torres G, Arevalo JC, Gomez R, Aguilar-Elguezabal A (2010) Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation. J Sol-Gel Sci Technol 56:219
    Yang J, Dai J, Li J (2011) Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity. Appl Surf Sci 257:8965
    Luo W, Hou JL, Zou DH, Cui LN, Zhu QY, Dai J (2018) Lanthanide–titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours. New J Chem 42:11629
    Li W-K, Hu P, Lu G, Gong X-Q (2014) Density functional theory study of mixed-phase TiO2: heterostructures and electronic properties. J Mol Model 20:2215
    Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A, Morante JR (2002) Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys 92:853
    Mazierski P, Lisowski W, Grzyb T, Winiarski MJ, Klimczuk T, Mikołajczyk A, Flisikowski J, Hirsch A, Kołakowska A, Puzyn T, Zaleska-Medynska A, Nadolna J (2017) Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study. Appl Catal B Environ 205:376
    Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res 3:34
    Plecnik CE, Liu SM, Shore SG (2003) Lanthanide−transition-metal complexes: from ion pairs to extended arrays. Acc Chem Res 36:499
    Bunzli JCG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293:19
    Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide doped titanium dioxide photocatalysts: effective photocatalysts for the enhanced degradation of salicylic acid and t-Cinnamic acid. J Catal 204:305
    Christy AA, Kvalheim OM, Velapoldi RA (1995) Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka-Munk equation. Vib Spectrosc 9:19
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669
    Liang C-H, Li F-B, Liu C-S, Lü J-L, Wang X-G (2008) The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes Pigm 76:477

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021