Exportar registro bibliográfico


Metrics:

Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions (2021)

  • Authors:
  • USP affiliated authors: METZGER, JEAN PAUL WALTER - IB ; OLIVEIRA, ALEXANDRE ADALARDO DE - IB ; MELITO, MELINA OLIVEIRA - IB
  • Unidade: IB
  • DOI: 10.1007/s10980-020-01166-7
  • Subjects: ECOLOGIA VEGETAL; FLORESTAS TROPICAIS; DESMATAMENTO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10980-020-01166-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MELITO, Melina; ARROYO-RODRÍGUEZ, Víctor; METZGER, Jean Paul; et al. Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions. Landscape Ecology, Heidelberg, v. 36, p. 439–453, 2021. Disponível em: < https://doi.org/10.1007/s10980-020-01166-7 > DOI: 10.1007/s10980-020-01166-7.
    • APA

      Melito, M., Arroyo-Rodríguez, V., Metzger, J. P., Cazetta, E., Rocha-Santos, L., Melo, F. P. L., et al. (2021). Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions. Landscape Ecology, 36, 439–453. doi:10.1007/s10980-020-01166-7
    • NLM

      Melito M, Arroyo-Rodríguez V, Metzger JP, Cazetta E, Rocha-Santos L, Melo FPL, Santos BA, Magnago LFS, Hernández-Ruedas MA, Faria D, Oliveira AA. Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions [Internet]. Landscape Ecology. 2021 ; 36 439–453.Available from: https://doi.org/10.1007/s10980-020-01166-7
    • Vancouver

      Melito M, Arroyo-Rodríguez V, Metzger JP, Cazetta E, Rocha-Santos L, Melo FPL, Santos BA, Magnago LFS, Hernández-Ruedas MA, Faria D, Oliveira AA. Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions [Internet]. Landscape Ecology. 2021 ; 36 439–453.Available from: https://doi.org/10.1007/s10980-020-01166-7

    Referências citadas na obra
    Aguilar LF, Mora CS (1992) Colonización y deterioro de la selva Lacandona. Rev Geográfica 116:67–84
    Alves F (2014) Densidade populacional e seleção de habitat pelo mutum-do-sudeste Crax blumenbachii na Reserva Natural Vale, Linhares, Espírito Santo. Msc. Dissertation. University of São Paulo.
    Arroyo-Rodríguez V, Mandujano S (2006) The importance of tropical rain forest fragments to the conservation of plant species diversity in Los Tuxtlas, Mexico. Biodivers Conserv 15:4159–4179. https://doi.org/10.1007/s10531-005-3374-8
    Arroyo-Rodríguez V, Pineda E, Escobar F, Benítez-Malvido J (2009) Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest. Conserv Biol 23:729–739. https://doi.org/10.1111/j.1523-1739.2008.01120.x
    Arroyo-Rodríguez V, González-Perez IM, Garmendia A et al (2013) The relative impact of forest patch and landscape attributes on black howler monkey populations in the fragmented Lacandona rainforest, Mexico. Landsc Ecol 28:1717–1727. https://doi.org/10.1007/s10980-013-9929-2
    Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340. https://doi.org/10.1111/brv.12231
    Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88. https://doi.org/10.1007/s11284-016-1411-6
    Arroyo-Rodríguez V, Fahrig L, Tabarelli M et al (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett. https://doi.org/10.1111/ele.13535
    Baccini A, Walker W, Carvalho L et al (2017) Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:230–234. https://doi.org/10.1126/science.aam5962
    Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045. https://doi.org/10.1126/science.1255768
    Baraloto C, Molto Q, Rabaud S et al (2013) Rapid simultaneous estimation of aboveground biomass and tree diversity across neotropical forests: a comparison of field inventory methods. Biotropica 45:288–298. https://doi.org/10.1111/btp.12006
    Bastin J-F, Barbier N, Réjou-Méchain M et al (2015) Seeing Central African forests through their largest trees. Sci Rep 5:13156. https://doi.org/10.1038/srep13156
    Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01
    Bélisle M, Desbochers A, Fortin MJ (2001) Influence of forest cover on the movements of forest birds: a homing experiment. Ecology 82:1893–1904
    Bello C, Galetti M, Pizo MA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:1–11. https://doi.org/10.1126/sciadv.1501105
    Benchimol M, Peres CA (2015) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. J Ecol 103:408–420. https://doi.org/10.1111/1365-2745.12371
    Bivand R, Lewin-Koh N (2017) maptools: tools for reading and handling spatial objects
    Boesing AL, Nichols E, Metzger JP (2018) Biodiversity extinction thresholds are modulated by matrix type. Ecography 41:1520–1533. https://doi.org/10.1111/ecog.03365
    Bongers F, Poorter L, Hawthorne WD, Sheil D (2009) The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol Lett 12:798–805. https://doi.org/10.1111/j.1461-0248.2009.01329.x
    Briant G, Gond V, Laurance SGW (2010) Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol Conserv 143:2763–2769. https://doi.org/10.1016/j.biocon.2010.07.024
    Canale GR, Peres CA, Guidorizzi CE et al (2012) Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7:e41671. https://doi.org/10.1371/journal.pone.0041671
    Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH et al (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126. https://doi.org/10.1016/j.biocon.2015.01.014
    Castillo-Campos G, Laborde J (2004) La vegetación. In: Guevara S, Laborde J, Sánchez-Ríos G (eds) Los Tuxtlas. El Paisaje de la Sierra. A. C. & European Union, Xalapa, pp 231–265
    Chaplin-Kramer R, Ramler I, Sharp R et al (2015) Degradation in carbon stocks near tropical forest edges. Nat Commun 6:10158. https://doi.org/10.1038/ncomms10158
    Chave J, Condit R, Aguilar S et al (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B 359:409–420
    Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecol 145:87–99. https://doi.org/10.1007/s00442-005-0100-x
    Chave J, Coomes D, Jansen S et al (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
    Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629
    Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198. https://doi.org/10.1016/S0378-1127(99)00327-8
    Costa JBP, Melo FPL, Santos BA, Tabarelli M (2012) Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecol 39:61–66. https://doi.org/10.1016/j.actao.2011.12.002
    Crowther TW, Glick HB, Covey KR et al (2015) Mapping tree density at a global scale. Nature 525:201–205. https://doi.org/10.1038/nature14967
    d’Albertas F, Costa K, Romitelli I et al (2018) Lack of evidence of edge age and additive edge effects on carbon stocks in a tropical forest. For Ecol Manag 407:57–65. https://doi.org/10.1016/j.foreco.2017.09.042
    da Silva JMC, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74. https://doi.org/10.1038/35003563
    DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7. https://doi.org/10.1646/02115
    Dirzo R, Miranda A (1990) Contemporary Neotropical defaunation and forest structure, function, and diversity—a Sequel to John Terborgh. Conserv Biol 4:444–447. https://doi.org/10.1111/j.1523-1739.1990.tb00320.x
    Dray S, Dufour AB (2007) The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04
    Estavillo C, Pardini R, Rocha PLB (2013) Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0082369
    Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. https://doi.org/10.1111/jbi.12130
    Fauset S, Johnson MO, Gloor M et al (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun 6:6857. https://doi.org/10.1038/ncomms7857
    Ferreira J, Lennox GD, Gardner TA et al (2018) Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat Clim Chang 8:744–749. https://doi.org/10.1038/s41558-018-0225-7
    Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks
    Garay I, Rizzini C (2004) A Floresta Atlântica de Tabuleiros: Diversidade Funcional da Cobertura Arbórea, 2°. Vozes, Petrópolis
    Garmendia A, Arroyo-Rodríguez V, Estrada A et al (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344. https://doi.org/10.1017/S0266467413000370
    Gentry AH (1982) Patterns of Neotropical plant species diversity. In: Hecht M, Wallace B, Prance G (eds) Evolutionary biology. Plenum Press, New York, pp 1–84
    Grainger A, Boucher DH, Frumhoff PC et al (2009) Biodiversity and REDD at Copenhagen. Curr Biol 19:974–976. https://doi.org/10.1016/j.cub.2009.10.001
    Hernández-Ruedas MA, Arroyo-Rodríguez V, Meave JA et al (2014) Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes. PLoS ONE 9:e98931. https://doi.org/10.1371/journal.pone.0098931
    Hijmans RJ, Etten J van, Mattiuzzi M et al (2014) Package “raster.” R 1–27. https://CRAN.R-project.org/package=raster
    Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Chang Biol 11:945–958. https://doi.org/10.1111/j.1365-2486.2005.00955.x
    Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63. https://doi.org/10.1111/geb.12233
    Laurance WF, Delamônica P, Laurance SG et al (2000) Rainforest fragmentation kills big trees. Nature 404:836. https://doi.org/10.1038/35009032
    Laurance WF, Lovejoy TE, Vasconcelos HL et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x
    Laurance WF, Nascimento HEM, Laurance SG et al (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci USA 103:19010–19014. https://doi.org/10.1073/pnas.0609048103
    Lindenmayer DB, Laurance WF (2016a) The unique challenges of conserving large old trees. Trends Ecol Evol 31:416–418. https://doi.org/10.1016/j.tree.2016.03.003
    Lindenmayer DB, Laurance WF (2016b) The ecology, distribution, conservation and management of large old trees. Biol Rev. https://doi.org/10.1111/brv.12290
    Lindner A (2010) Biomass storage and stand structure in a conservation unit in the Atlantic Rainforest: the role of big trees. Ecol Eng 36:1769–1773. https://doi.org/10.1016/j.ecoleng.2010.07.017
    Lira PK, de Souza LM, Metzger JP (2019) Temporal lag in ecological responses to landscape change: where are we now? Curr Landsc Ecol Rep 4:70–82. https://doi.org/10.1007/s40823-019-00040-w
    Magnago LFS, Magrach A, Laurance WF et al (2015) Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Glob Chang Biol 21:3455–3468. https://doi.org/10.1111/gcb.12937
    Magnago LFS, Rocha MF, Meyer L et al (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318. https://doi.org/10.1007/s10531-015-0961-1
    Magnago LFS, Magrach A, Barlow J et al (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol 31:542–552. https://doi.org/10.1111/1365-2435.12752
    Malhi Y, Gardner TA, Goldsmith GR et al (2014) Tropical forests in the Anthropocene. Annu Rev Environ Resour 39:125–159. https://doi.org/10.1146/annurev-environ-030713-155141
    Mangiafico S (2020) rcompanion: functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion
    Melito M (2016) Effects of forest fragmentation on biomass in Tropical Forests. PhD. thesis. University of São Paulo
    Melito M, Metzger JP, de Oliveira AA (2018) Landscape-level effects on aboveground biomass of tropical forests: a conceptual framework. Glob Chang Biol 24:597–607. https://doi.org/10.1111/gcb.13970
    Melo FPL, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468. https://doi.org/10.1016/j.tree.2013.01.001
    Mendes Pontes AR, Beltrão ACM, Normande IC et al (2016) Mass extinction and the disappearance of unknown mammal species: Scenario and perspectives of a biodiversity hotspot’s hotspot. PLoS ONE 11:1–26. https://doi.org/10.1371/journal.pone.0150887
    Metzger JP (1997) Relationships between landscape structure and tree species diversity in tropical forests of South-East Brazil. Landsc Urban Plan 37:29–35. https://doi.org/10.1016/S0169-2046(96)00367-2
    Metzger JP (2000) Tree functional group richness and landscape structure in a brazilian tropical fragmented landscape. Ecol Appl 10:1147–1161. https://doi.org/10.1890/1051-0761(2000)010[1147:TFGRAL]2.0.CO;2
    Metzger JP, Martensen AC, Dixo M et al (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033
    Michalski F, Nishi I, Peres CA (2007) Disturbance-mediated drift in tree functional groups in Amazonian forest fragments. Biotropica 39:691–701. https://doi.org/10.1111/j.1744-7429.2007.00318.x
    Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS ONE 10:e0128923. https://doi.org/10.1371/journal.pone.0128923
    Osuri AM, Ratnam J, Varma V et al (2016) Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat Commun 7:11351. https://doi.org/10.1038/ncomms11351
    Pardini R, Faria D, Accacio GM et al (2009) The challenge of maintaining Atlantic forest biodiversity : a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190. https://doi.org/10.1016/j.biocon.2009.02.010
    Pardini R, de Bueno A et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666. https://doi.org/10.1371/journal.pone.0013666
    Pebesma E, Bivand RS (2005) Classes and methods for spatial data in R. R News 5. https://cran.r-project.org/doc/Rnews/
    Peres CA, Emilio T, Schietti J, Levi T (2016) Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc Natl Acad Sci USA 113:892–897. https://doi.org/10.1073/pnas.1516525113
    Pinheiro J, Bates D, DebRoy S et al (2018) nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme
    Pinho BX, Peres CA, Leal IR, Tabarelli M (2020) Critical role and collapse of tropical mega-trees: a key global resource, 1st edn. Elsevier, Amsterdam
    Pütz S, Groeneveld J, Alves LF et al (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Modell 222:1986–1997. https://doi.org/10.1016/j.ecolmodel.2011.03.038
    R Core Team (2020) R: a language and environment for statistical computing. R     foundation for statistical computing, Vienna, Austria. https://www.R-project.org/
    Rocha-Santos L, Pessoa MS, Cassano CR et al (2016) The shrinkage of a forest: landscape-scale deforestation leading to overall changes in local forest structure. Biol Conserv 196:1–9. https://doi.org/10.1016/j.biocon.2016.01.028
    Santos BA, Peres CA, Oliveira MA et al (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260. https://doi.org/10.1016/j.biocon.2007.09.018
    Santo-Silva EE, Santos BA, Arroyo-Rodríguez V et al (2018) Phylogenetic dimension of tree communities reveals high conservation value of disturbed tropical rain forests. Divers Distrib 24:776–790. https://doi.org/10.1111/ddi.12732
    Saracura VF (1997) Plano de Manejo Reserva Biológica de Una. IBAMA/MMA, Brasília
    Schlesinger WH, Bernhardt ES (2015) Biogeochemistry: an analysis of global change, 3rd edn. Elsevier, Oxford
    Slik JWF, Paoli G, Mcguire K et al (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–1271. https://doi.org/10.1111/geb.12092
    Sousa JSB, Longo MG, Santos BA (2019) Landscape patterns of primary production reveal agricultural benefits from forest conservation. Perspect Ecol Conserv 17:136–145. https://doi.org/10.1016/j.pecon.2019.08.001
    Srbek-Araujo AC, Chiarello AG (2016) Population status of the jaguar Panthera onca in one of its last strongholds in the Atlantic Forest. Oryx. https://doi.org/10.1017/S0030605315001222
    Srbek-Araujo AC, Rocha MF, Peracchi AL (2014) Mastofauna da Reserva Natural Vale, Linhares, Espírito Santo, Brasil. Ciência Ambient 49:153–167
    Strassburg BBN, Kelly A, Balmford A et al (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv Lett 3:98–105
    Sullivan MJP, Talbot J, Lewis SL et al (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:39102. https://doi.org/10.1038/srep39102
    Supp SR, Ernest SKM (2014) Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95:1717–1723. https://doi.org/10.1890/13-2250.1
    Tabarelli M, Peres CA, Melo FPL (2012) The “few winners and many losers” paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140. https://doi.org/10.1016/j.biocon.2012.06.020
    Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP (2014) A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol 22:169–177. https://doi.org/10.1111/rec.12049
    Tscharntke T, Tylianakis JM, Rand T et al (2012) Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol Rev 87:661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
    Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318. https://doi.org/10.1111/1365-2664.12190
    Watling JI, Arroyo-Rodríguez V, Pfeifer M et al (2020) Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol Lett 23:674–681. https://doi.org/10.1111/ele.13471
    Zanne A, Lopez-Gonzalez G, Coomes D et al (2009) Data from: towards a worldwide wood economics spectrum. Dryad Dataset. https://doi.org/10.5061/dryad.234
    Zar J (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey
    Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021