Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa (2020)
- Authors:
- Autor USP: ABDALA, EDSON - FM
- Unidade: FM
- DOI: 10.1128/AAC.02494-19
- Subjects: BACTEREMIA; PSEUDOMONAS; NEOPLASIAS; FATORES DE RISCO
- Agências de fomento:
- PfizerPfizer
- GileadGilead Sciences
- Promex Stiftung fur die Forschung (Carigest SA)
- European Development Regional Fund A Way To Achieve Europe, Operative Program Intelligent Growth 2014-2020
- Instituto de Salud Carlos III, Subdireccion General de Redes y Centros de Investigacion Cooperativa, Ministerio de Economia, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [REIPI RD16/0016/0001]
- Spanish Plan Nacional de I+D+i 2013-2016
- ESGICH study group
- ESGBIES study group
- Language: Inglês
- Imprenta:
- Publisher place: Washington
- Date published: 2020
- Source:
- Título: Antimicrobial agents and chemotherapy
- ISSN: 0066-4804
- Volume/Número/Paginação/Ano: v. 64, n. 4, article ID e02494-19, 12p, 2020
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
GUDIOL, C et al. Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, v. 64, n. 4, 2020Tradução . . Disponível em: https://doi.org/10.1128/AAC.02494-19. Acesso em: 11 jan. 2026. -
APA
Gudiol, C., Albasanz-Puig, A., Laporte-amargos, J., Pallares, N., Mussetti, A., Ruiz-camps, I., et al. (2020). Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 64( 4). doi:10.1128/AAC.02494-19 -
NLM
Gudiol C, Albasanz-Puig A, Laporte-amargos J, Pallares N, Mussetti A, Ruiz-camps I, Puerta-alcalde P, Abdala E, Oltolini C, Akova M. Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa [Internet]. Antimicrobial agents and chemotherapy. 2020 ; 64( 4):[citado 2026 jan. 11 ] Available from: https://doi.org/10.1128/AAC.02494-19 -
Vancouver
Gudiol C, Albasanz-Puig A, Laporte-amargos J, Pallares N, Mussetti A, Ruiz-camps I, Puerta-alcalde P, Abdala E, Oltolini C, Akova M. Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa [Internet]. Antimicrobial agents and chemotherapy. 2020 ; 64( 4):[citado 2026 jan. 11 ] Available from: https://doi.org/10.1128/AAC.02494-19 - Management of hepatocellular carcinoma during the COVID-19 pandemic - Sao Paulo clinicas liver cancer group multidisciplinary consensus statement
- Role of lock therapy for long-term catheter-related infections by multidrug-resistant bacteria
- Recommendations for Management of Endemic Diseases and Travel Medicine in Solid-Organ Transplant Recipients and Donors: Latin America
- Infeccoes em 35 pacientes submetidos a transplante de figado: incidencia, agentes etiologicos e evolucao
- Contribuição científica para o manejo das infecções em transplantes de órgãos sólidos
- Avaliação da translocação bacteriana no transplante de fígado realizado pelos métodos convencional e "piggyback"
- Clinical profile and mortality predictors for tuberculosis disease among patients with solid tumours
- Analysis of spontaneous resolution of cytomegalovirus replication after transplantation in CMV-seropositive patients with pretransplant CD8+IFNG + response
- Clinical efficacy of β-lactam/β-lactamase inhibitor combinations for the treatment of bloodstream infection due to extended-spectrum β-lactamase-producing Enterobacteriaceae in haematological patients with neutropaenia: a study protocol for a retrospective observational study (BICAR)
- Thermal and chronological stability of monocyte distribution width (MDW), the new biomarker for sepsis. [Carta]
Informações sobre o DOI: 10.1128/AAC.02494-19 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
