Exportar registro bibliográfico


Metrics:

Multivariate characterization of spontaneously generated electrical signals evoked by electrical stimulation in abscisic acid mutant tomato plants (2021)

  • Authors:
  • USP affiliated authors: MACEDO, FRANCYNES DA CONCEICAO OLIVEIRA - ESALQ ; OLIVEIRA, RICARDO FERRAZ DE - ESALQ ; SILVA, FABIA BARBOSA DA - ESALQ ; CAPELIN, DIOGO - ESALQ ; SILVA, ALDEIR RONALDO - ESALQ
  • Unidade: ESALQ
  • DOI: 10.1007/s40626-020-00191-w
  • Subjects: ELETROFISIOLOGIA EM PLANTAS; ESTIMULAÇÃO ELÉTRICA; GENÓTIPOS; HORMÔNIOS VEGETAIS; MUTAÇÃO VEGETAL; TOMATE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s40626-020-00191-w (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Fábia Barbosa da; MACEDO, Francynes da Conceição Oliveira; CAPELIN, Diogo; et al. Multivariate characterization of spontaneously generated electrical signals evoked by electrical stimulation in abscisic acid mutant tomato plants. Theoretical and Experimental Plant Physiology, Heidelberg, p. 1-14, 2021. Disponível em: < https://doi.org/10.1007/s40626-020-00191-w > DOI: 10.1007/s40626-020-00191-w.
    • APA

      Silva, F. B. da, Macedo, F. da C. O., Capelin, D., Daneluzzi, G. S., Silva, A. R., Müller, C., & Oliveira, R. F. de. (2021). Multivariate characterization of spontaneously generated electrical signals evoked by electrical stimulation in abscisic acid mutant tomato plants. Theoretical and Experimental Plant Physiology, 1-14. doi:10.1007/s40626-020-00191-w
    • NLM

      Silva FB da, Macedo F da CO, Capelin D, Daneluzzi GS, Silva AR, Müller C, Oliveira RF de. Multivariate characterization of spontaneously generated electrical signals evoked by electrical stimulation in abscisic acid mutant tomato plants [Internet]. Theoretical and Experimental Plant Physiology. 2021 ; 1-14.Available from: https://doi.org/10.1007/s40626-020-00191-w
    • Vancouver

      Silva FB da, Macedo F da CO, Capelin D, Daneluzzi GS, Silva AR, Müller C, Oliveira RF de. Multivariate characterization of spontaneously generated electrical signals evoked by electrical stimulation in abscisic acid mutant tomato plants [Internet]. Theoretical and Experimental Plant Physiology. 2021 ; 1-14.Available from: https://doi.org/10.1007/s40626-020-00191-w

    Referências citadas na obra
    Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57. https://doi.org/10.1016/j.cub.2012.11.022
    Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119–126. https://doi.org/10.1016/S0014-5793(03)01118-9
    Box GEP, Cox DR (1964) An analysis of transformations. J Royal Soc 26:211–252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
    Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB (1999) Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17:427–431. https://doi.org/10.1046/j.1365-313x.1999.00386.x
    Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146. https://doi.org/10.1105/tpc.000943
    Cuin T, Dreyer I, Michard E (2018) The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int J Mol Sci 19:926. https://doi.org/10.3390/ijms19040926
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548. https://doi.org/10.1016/s0092-8674(00)80513-9
    Duarte KE, de Souza WR, Santiago TR (2019) Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Sci Rep 9:4028. https://doi.org/10.1038/s41598-019-40623-5
    Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214. https://doi.org/10.1007/s00425-006-0458-y
    Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257. https://doi.org/10.1111/j.1365-3040.2006.01614.x
    Furch AC, Zimmermann MR, Will T, Hafke JB, van Bel AJ (2010) Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708. https://doi.org/10.1093/jxb/erq181
    Gagliano M, Vyazovskiy VV, Borbély AA, Grimonprez M, Depczynski M (2016) Learning by association in plants. Sci Rep 6:38427. https://doi.org/10.1038/srep38427
    Gallé A, Lautner S, Flexas J, Ribas-Carbo M, Hanson D, Roesgen J (2013) Photosynthetic responses of soybean (Glycine max L.) to heat-induced electrical signaling are predominantly governed by modifications of mesophyll conductance for CO2. Plant Cell Environ 36:542–552. https://doi.org/10.1111/j.1365-3040.2012.02594.x
    Gilroy S, Bialasek M, Suzuki N, Górecka M, Devireddy AR, Karpinski S, Mittler R (2016) ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1613. https://doi.org/10.1104/pp.16.00434
    Herde O, Atzorn R, Fisahn J, Wasternack C, Willmitzer L, Peña-Cortés H (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol 112:853–860. https://doi.org/10.1104/pp.112.2.853
    Herde O, Pena Cortes H, Wasternack C, Willmitzer L, Fisahn J (1999) Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol 119:213–218. https://doi.org/10.1104/pp.119.1.213
    Herde O, Peña-Cortés H, Fisahn J (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36:737–743. https://doi.org/10.1093/oxfordjournals.pcp.a078816
    Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL (2012) On Guard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042. https://doi.org/10.1104/pp.112.197244
    Hlavácková V, Krchnák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244. https://doi.org/10.1007/s00425-006-0325-x
    Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. https://doi.org/10.1002/bimj.200810425
    Huber AE, Bauerle TL (2016) Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. J Exp Bot 67:2063–2079. https://doi.org/10.1093/jxb/erw099
    Kaiser HF (1974) An index of factorial simplicity. Psychometrika 39:31–36. https://doi.org/10.1007/BF02291575
    Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Kramer DM (2017) The role of light–dark regulation of the chloroplast ATP synthase. Front Plant Sci 8:1248. https://doi.org/10.3389/fpls.2017.01248
    Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytol 213:1818–1835. https://doi.org/10.1111/nph.14352
    Król E, Dziubińska H, Trębacz K (2010) What do plants need action potentials for? In: DuBois ML (ed) Action potential. Nova Science Publisher, New York, pp 1–28
    Kupisz K, Dziubińska H, Trębacz K (2017) Generation of action potential-type changes in response to darkening and illumination as indication of the plasma membrane proton pump status in Marchantia polymorpha. Acta Physiol Plant 39:82. https://doi.org/10.1007/s11738-017-2378-9
    Macedo FCO, Dziubinska H, Trebacz K, Oliveira RF, Moral RA (2015) Action potentials in abscisic acid-deficient tomato mutant generated spontaneously and evoked by electrical stimulation. Acta Physiol Plant 37:207. https://doi.org/10.1007/s11738-015-1950-4
    Malaquias JB, Godoy WAC, Garcia AG, Ramalho FS, Omoto C (2017b) Larval dispersal of Spodoptera frugiperda strains on Bt cotton: A model for understanding resistance evolution and consequences for its management. Sci Rep 7:16109. https://doi.org/10.1038/s41598-017-16094-x
    Malaquias JB, Ramalho FS, Santos DCT, Brugger BP, Lira S, Wilcken AC, Pachú CF, Zanuncio JK JC (2017a) Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings. Sci Rep 7:41740. https://doi.org/10.1038/srep41740
    Meimoun P, Vidal G, Bohrer AS (2009) Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. Plant Signal Behav 4:830–835. https://doi.org/10.4161/psb.4.9.9396
    Moral RA, Hinde J, Demétrio CGB (2017) Half-normal plots and overdispersed models in R: The hnp Package. J Stat Softw 10:1–23. https://doi.org/10.18637/jss.v081.i10
    Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signaling. Nature 500:422–426. https://doi.org/10.1038/nature12478
    Okumura M, Inoue S, Takahashi K, Ishizaki K, Kohchi T, Kinoshita T (2012) Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha. Plant Physiol 159:826–834. https://doi.org/10.1104/pp.112.195537
    Pavlovic A, Jaksova J, Novak O (2017) Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol 216:927–938. https://doi.org/10.1111/nph.14747
    Pavlovic A, Slováková L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000. https://doi.org/10.1093/jxb/erq404
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/
    Ribeiro-Oliveira JP (2019) Electromagnetism and plant development: a new unknown in a known world. Theor Exp Plant Physiol 31:423–427. https://doi.org/10.1007/s40626-019-00163-9
    Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104. https://doi.org/10.1071/FP15252
    Silva FB, Macedo FDCO, Daneluzzi GS, Capelin D, Silva AR, Müller C, Oliveira RF (2020) Action potential propagation effect on gas exchange of ABA-mutant microtomato after re-irrigation stimulus. Environ Exp Bot 178:104149. https://doi.org/10.1016/j.envexpbot.2020.104149
    Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag, Berlin, pp 291–308. https://doi.org/10.1007/978-3-540-28516-8_20
    Stolarz M, Dziubińska H (2017) Spontaneous action potentials and circumnutation in Helianthus annuus. Acta Physiol Plant 39:234. https://doi.org/10.1007/s11738-017-2528-0
    Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130:373–387. https://doi.org/10.1007/s11120-016-0270-x
    Sukhov V, Gaspirovich V, Mysyagin S, Vodeneev V (2017) High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of pea. Front Physiol 8:763. https://doi.org/10.3389/fphys.2017.00763
    Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular plants. J Membr Biol 232:59–67. https://doi.org/10.1007/s00232-009-9218-9
    Takamura T (2006) Electrochemical potential around the plant root in relation to metabolism and growth acceleration. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 341–374. https://doi.org/10.1007/978-3-540-37843-3_15
    Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis‐epoxycarotenoid dioxygenase gene causes over‐production of abscisic acid. Plant J 23:363–374. https://doi.org/10.1046/j.1365-313x.2000.00789.x
    Thompson AJ, Thorne ET, Burbidge A, Jackson AC, Sharp RE, Taylor IB (2004) Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant Cell Environ 27:459–471. https://doi.org/10.1111/j.1365-3040.2003.01164.x
    Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag, Berlin, pp 277–290. https://doi.org/10.1007/978-3-540-28516-8_19
    Vodeneev V, Akinchits E, Sukhov V (2015) Variation potential in higher plants: mechanisms of generation and propagation. Plant Signal Behav 10:e1057365. https://doi.org/10.1080/15592324.2015.1057365
    Vodeneev VA, Opritov VA, Pyatygin SS (2006) Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo. Russ J Plant Physiol 53:481–487. https://doi.org/10.1134/S102144370604008X
    Vuralhan-Eckert J, Lautner S, Fromm J (2018) Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants. J Plant Physiol 223:32–36. https://doi.org/10.1016/j.jplph.2018.02.003
    Wagner E, Lehner L, Normann J, Veit J, Albrechtová J (2006) Hydro-electrochemical integration of the higher plant—basis for electrogenic flower induction. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag, Berlin, pp 369–387. https://doi.org/10.1007/978-3-540-28516-8_25
    Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19:531–541. https://doi.org/10.1016/j.pnsc.2008.08.009
    Zawadzki T, Dziubiśka H, Davies E (2008) Characteristics of action potentials generated spontaneously in Helianthus annuus. Physiol Plant 93:291–297. https://doi.org/10.1111/j.1399-3054.1995.tb02231.x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021