Exportar registro bibliográfico


Wheat dwarfing influences selection of the rhizosphere microbiome (2020)

  • Authors:
  • Unidade: ESALQ
  • DOI: 10.1038/s41598-020-58402-y
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaAcesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-020-58402-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão Publicada3012861-Wheat dwarfing in...Direct link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KAVAMURA, Vanessa N; ROBINSON, Rebekah J; HUGHES, David; et al. Wheat dwarfing influences selection of the rhizosphere microbiome. Scientific Reports, Londres, Nature Publishing Group, v. 10, p. 1-11, 2020. Disponível em: < https://doi.org/10.1038/s41598-020-58402-y > DOI: 10.1038/s41598-020-58402-y.
    • APA

      Kavamura, V. N., Robinson, R. J., Hughes, D., Clark, I., Rossmann, M., Melo, I. S. de, et al. (2020). Wheat dwarfing influences selection of the rhizosphere microbiome. Scientific Reports, 10, 1-11. doi:10.1038/s41598-020-58402-y
    • NLM

      Kavamura VN, Robinson RJ, Hughes D, Clark I, Rossmann M, Melo IS de, Hirsch PR, Mendes R, Mauchline TH. Wheat dwarfing influences selection of the rhizosphere microbiome [Internet]. Scientific Reports. 2020 ; 10 1-11.Available from: https://doi.org/10.1038/s41598-020-58402-y
    • Vancouver

      Kavamura VN, Robinson RJ, Hughes D, Clark I, Rossmann M, Melo IS de, Hirsch PR, Mendes R, Mauchline TH. Wheat dwarfing influences selection of the rhizosphere microbiome [Internet]. Scientific Reports. 2020 ; 10 1-11.Available from: https://doi.org/10.1038/s41598-020-58402-y

    Referências citadas na obra
    Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Wild cereal domestication in the Near East. Nat. Rev. Genet. 3, 429–441 (2002).
    Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5(3), 291–317 (2013).
    OECD/FAO. OECD-FAO Agricultural Outlook 2017–2026, OECD Publishing, Paris, https://doi.org/10.1787/agr_outlook-2017-en (2017).
    Borojevic, K. & Borojevic, K. The transfer and history of “Rht” genes in wheat from Japan to Europe. J. Hered. 96(4), 455–459 (2005).
    Hedden, P. The genes of the Green Revolution. Trends Genet. 19(1), 5–9 (2003).
    Würschum, T., Langer, S. M., Longin, F. H., Tucker, M. R. & Leiser, W. L. A modern Green Revolution gene for reduced height in wheat. Plant J. 92, 892–903 (2017).
    Narayanan, S., Mohan, A., Gill, K. S. & Prasad, P. V. V. Variability of root traits in spring wheat germplasm. PLoS ONE. 9(6), e100317 (2014).
    Wasson, A. P. et al. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63(9), 3485–3498 (2012).
    Bai, C., Liang, Y. & Hawkesford, M. J. Identification of QTLs associated with seedling root traits and their correlation with plant height. J. Exp. Bot. 64(6), 1745–1753 (2013).
    Figueroa-Bustos, V., Palta, J. A., Chen, Y. & Siddique, K. H. M. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy 8, 109 (2018).
    Paez-Garcia, A. et al. Root traits and phenotyping strategies for plant improvement. Plants. 4, 334–355 (2015).
    Sessitsch, A. & Mitter, B. 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb. Biotechnol. 8(1), 32–33 (2015).
    Wei, Z. & Jousset, A. Plant breeding goes microbial. Trends Plant Sci. 22(7), 555–558 (2017).
    Mahoney, A. K., Yin, C. & Hulbert, S. H. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Front. Plant Sci. 8, 132 (2017).
    Mauchline, T. H. et al. An analysis of Pseudomonas genomic diversity intake-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environ. Microbiol. 17(11), 4764–4778 (2015).
    Kavamura, V. N. et al. Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front. Microbiol. 9, 1074 (2018).
    Kavamura, V. N. et al. Land management and microbial seed load effect on rhizosphere and endosphere bacterial community assembly in wheat. Front. Microbiol. 10, 2625 (2019).
    Mavrodi, D. V. et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant Sci. 9, 345 (2018).
    Huang, Y., Kuang, Z., Wang, W. & Cao, L. Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol. Control 98, 27–33 (2016).
    Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405, 381–396 (2016).
    Gdanetz, K. & Trial, F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 1(3), 158–168 (2017).
    Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits - scripts for statistical analysis and graphs. ISME J. 11(10), 2244–2257 (2017).
    Saleem, M. et al. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere. 6, 47–51 (2018).
    Bertin, C., Yang, X. H. & Weston, L. A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil. 256, 67–83 (2003).
    Graaff, M.-A., Six, J., Jastrow, J. D., Schadt, C. W. & Wullschleger, S. D. Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biol. Biochem. 58, 198–206 (2013).
    Lamoureux, E. V., Grandy, S. A. & Langille, M. G. I. Moderate exercise has limited but distinguishable effects on the mouse microbiome. mSystems. 2, e00006–17 (2017).
    Mendes, R. & Raaijmakers, J. M. Cross-kingdom similarities in microbiome functions. ISME J. 9, 1905–1907 (2015).
    Germida, J. & Siciliano, S. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol. Fert. Soils. 33, 410–415 (2001).
    Shewry, P. R., Pellny, T. K. & Lovegrove, A. Is modern wheat bad for health? Nat. Plants. 2, 1–3 (2016).
    Pask, A.J.D., Pietragalla, J., Mullan, D.M., Reynolds, M.P. (eds.). Physiological Breeding II: A Field Guide to Wheat Phenotyping. CIMMYT: Mexico, D.F, (2012).
    Robinson, R. J., Fraaije, B. A., Jackson, R. W., Hirsch, P. R. & Mauchline, T. M. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes. Sci. Rep. 6, 25581 (2016).
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6(8), 1621–1624 (2012).
    Pylro, V. S. et al. Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J. Microbiol. Methods. 107, 30–37 (2014).
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7(5), 335–336 (2010).
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26(19), 2460–2461 (2010).
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2012).
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26(1), 32–46 (2001).
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4(1), 9pp (2001).
    Dhariwal, A. et al. MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–188 (2017).
    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 5, 27 (2017).
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics. 13, 113 (2012).
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–504 (2003).
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. Plos Comput. Biol. 508, 8–e1002687 (2012).
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31(9), 814–823 (2013).
    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics. 30, 3123–3124 (2014).
    Guarda, G., Padovan, S. & Delogu, G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Europ. J. Agronomy. 21, 181–192 (2004).
    Ormoli, L., Costa, C., Negri, S., Perenzin, M. & Vaccino, P. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches. Sci. Rep. 5, 17 (2015).
    Aziz, M. M., Palta, J. A., Siddique, K. H. M. & Sadras, V. O. Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. Plant Soil. 413, 181–192 (2017).
    Dorlodot, S. et al. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12(10), 474–481 (2007).
    Rana, A. et al. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61, 893–900 (2011).
    Schlatter, D. C., Yin, C., Hulbert, S., Burke, I. & Paulitz, T. Impacts of repeated glyphosate use on wheat-associated bacteria are small and depend on glyphosate use history. Appl. Environ. Microbiol. 83, e01354–17 (2017).
    Kodama, Y. & Watanabe, K. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int. J. Syst. Evol. Microbiol. 61, 1781–1785 (2011).
    Khan, A. L., Waqas, M. & Kang, S. M. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52(8), 689–695 (2014).
    Cardinale, M. et al. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol. Res. 181, 22–32 (2015).
    Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92(6), fiw083 (2016).
    Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. J. Soil Sci. Plant Nutr. 54, 33–45 (2008).
    Bruto, M., Prigent-Combaret, C., Muller, D. & Moënne-Loccoz, Y. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci. Rep. 4, 6261 (2014).
    Pearce, S. et al. Molecular characterization of Rht-1 dwarfing genes in hexaploidy wheat. Plant Physiol. 157, 1820–1831 (2011).
    Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 400, 256–261 (1999).
    Richards, D. E., King, K. E., Ait-Ali, T. & Harberd, N. P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signalling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 67–88 (2001).
    Nett, R. et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat. Chem. Biol. 13, 69–74 (2017).
    Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).
    Fonouni-Farde, C. et al. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nat. Commun. 7, 12636 (2016).
    Foo, E., Ross, J. J., Jones, W. T. & Reid, J. B. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111, 769–779 (2013).
    Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).
    Wang, Y. H. & Irving, H. R. Developing a model of plant hormone interactions. Plant Signal Behav. 6(4), 494–500 (2011).
    Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front. Plant Sci. 8, 2124 (2017).
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23(1), 25–41 (2018).
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19(8), 926–936 (2016).
    Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).
    Oberholster, T., Vikram, S., Cowan, D. & Valverde, A. Key microbial taxa in the rhizosphere of sorghum and sunflower grown in crop rotation. Sci. Total Environ. 624, 530–539 (2018).
    Olesen, J., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. PNAS. 104, 19891–19896 (2007).
    Tao, J. et al. Integrated network analysis reveals the importance of microbial interactions for maize growth. Appl. Microbiol. Biotechnol. 102, 3805–3818 (2018).
    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio. 2(4), e00122–11 (2011).
    Guimerà, R. & Amaral, L. A. N. Cartography of complex networks: modules and universal roles. J. Stat. Mech. P02001, P02001-1-P02001-13 (2005).
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5(219), 219 (2014).
    Yang, H. et al. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Front. Microbiol. 8, 2179 (2017).
    Saville, R. J. et al. The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J. Exp. Bot. 63(3), 1271–1283 (2012).
    Srinivasachary Gosman, N. et al. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 118, 695–702 (2009).
    Fudou, R. et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. Isolation and structural elucidation. J. Antibiot. 54(2), 153–156 (2001).
    Harwani, D. Myxobacteria as a promising source of novel natural products. IJRASET. 5, 2654–2660 (2017).
    Gontia-Mishra, I., Sapre, S., Kachare, S. & Tiwari, S. Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil. 414, 213–227 (2017).
    Landa, B. B., Mavrodi, D. M., Thomashow, L. S. & Weller, D. M. Interactions between strains of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology. 93, 982–994 (2003).
    de Boer, W., Wagenaar, A.-M., Klein, Gunnewiek, P. J. A. & van Veen, J. A. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol. Ecol. 59, 177–185 (2007).
    Yin, C. et al. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 79(23), 7428–7438 (2013).
    Lopes, L. D., Silva, M. D. C. P. & Andreote, F. D. Bacterial abilities and adaptation toward the rhizosphere colonization. Front. Microbiol. 7, 1341 (2016).
    Mattarozzi, M. et al. A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal. Bioanal. Chem. 409, 2327–2339 (2017).
    Li, M. et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci. 19, 443 (2018).
    Liu, Y. et al. Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. MPMI. 29(4), 324–330 (2016).
    Poole, P. Shining a light on the dark world of plant root–microbe interactions. PNAS. 114(17), 4281–4283 (2017).
    Barahona, E. et al. Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization. Front. Microbiol. 7, 1471 (2016).
    Turnbull, G. A., Morgan, A. W., Whipps, J. M. & Saunders, J. R. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol. 36, 21–31 (2001).
    Voogd, N.J., Cleary, D.F.R., Polonia, A.R.M. & Gomes, N.C.M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. 91 (2015).
    Gopal, M. & Gupta, A. Microbiome selection could spur next-generation plant breeding strategies. Front. Microbiol. 7, 1971 (2016).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021