Exportar registro bibliográfico


Metrics:

Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial (2020)

  • Authors:
  • USP affiliated authors: ALVES, MARIA JANIEIRE DE NAZARÉ NUNES - FM ; RONDON, MARIA URBANA PINTO BRANDÃO - EEFE ; VIEIRA, MARCELO LUIZ CAMPOS - FM ; RAMIRES, FELIX JOSÉ ALVAREZ - FM ; BRUM, PATRICIA CHAKUR - EEFE ; MADY, CHARLES - FM ; NEGRÃO, CARLOS EDUARDO - EEFE ; IANNI, BARBARA MARIA - FM ; FONSECA, KEILA CARDOSO BARBOSA - FM
  • Unidades: FM; EEFE
  • DOI: 10.1007/s10286-020-00721-1
  • Subjects: CARDIOPATIAS; DOENÇA DE CHAGAS; SISTEMA NERVOSO SIMPÁTICO; EXERCÍCIO FÍSICO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10286-020-00721-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SARMENTO, Adriana Oliveira; ANTUNES-CORREA, Ligia M; ALVES, Maria Janieire de Nazaré Nunes; et al. Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial. Clinical Autonomic Research, Darnstadt, 2020. Disponível em: < https://doi.org/10.1007/s10286-020-00721-1 > DOI: 10.1007/s10286-020-00721-1.
    • APA

      Sarmento, A. O., Antunes-Correa, L. M., Alves, M. J. de N. N., Bacurau, A. V. N., Fonseca, K. C. B., Pessoa, F. G., et al. (2020). Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial. Clinical Autonomic Research. doi:10.1007/s10286-020-00721-1
    • NLM

      Sarmento AO, Antunes-Correa LM, Alves MJ de NN, Bacurau AVN, Fonseca KCB, Pessoa FG, Lobo DML, Moreira LDP, Trombetta IC, Rondon MUPB, Rondon E, Vieira MLC, Ramires FJA, Brasileiro-Santos MS do, Brum PC, Mady C, Negrão CE, Thomas Scott, Ianni Barbara M. Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial [Internet]. Clinical Autonomic Research. 2020 ;Available from: https://doi.org/10.1007/s10286-020-00721-1
    • Vancouver

      Sarmento AO, Antunes-Correa LM, Alves MJ de NN, Bacurau AVN, Fonseca KCB, Pessoa FG, Lobo DML, Moreira LDP, Trombetta IC, Rondon MUPB, Rondon E, Vieira MLC, Ramires FJA, Brasileiro-Santos MS do, Brum PC, Mady C, Negrão CE, Thomas Scott, Ianni Barbara M. Effect of exercise training on cardiovascular autonomic and muscular function in subclinical Chagas cardiomyopathy: a randomized controlled trial [Internet]. Clinical Autonomic Research. 2020 ;Available from: https://doi.org/10.1007/s10286-020-00721-1

    Referências citadas na obra
    Chagas C (1909) (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. Scielo 1:159–218
    Nunes MCP, Dones W, Morillo CA, Encina JJ, Ribeiro AL (2013) Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 62:767–776
    Rassi AJ, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet (London, England) 375:1388–1402
    Shikanai-Yasuda MA, Carvalho NB (2012) Oral transmission of Chagas disease. Clin Infect Dis 54:845–852
    Biolo A, Ribeiro AL, Clausell N (2010) Chagas cardiomyopathy-where do we stand after a hundred years? Prog Cardiovasc Dis 52:300–316
    Dias E, Laranja FS, Miranda A, Nobrega G (1956) Chagas’ disease; a clinical, epidemiologic, and pathologic study. Circulation 14:1035–1060
    Barretto ACP, Santos AC, Munhoz R, Rondon MUPB, Franco FG, Trombetta IC et al (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307
    Mirizzi G, Giannoni A, Bramanti F, Ripoli A, Varanini M, Bernardi L et al (2013) A simple method for measuring baroreflex sensitivity holds prognostic value in heart failure. Int J Cardiol 161:e9–11
    Consolim-Colombo FM, Filho JA, Lopes HF, Sobrinho CR, Otto ME, Riccio GM et al (2000) Decreased cardiopulmonary baroreflex sensitivity in Chagas’ heart disease. Hypertens (Dallas, TX 1979) 36:1035–1039
    Soares Barreto-Filho JA, Consolim-Colombo FM, Ferreira Lopes H, Martins Sobrinho CR, Guerra-Riccio GM, Krieger EM (2001) Dysregulation of peripheral and central chemoreflex responses in Chagas’ heart disease patients without heart failure. Circulation 104:1792–1798
    Bacurau AVN, Jardim MA, Ferreira JCB, Bechara LRG, Bueno CR, Alba-Loureiro TC et al (2009) Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol [Internet] 106:1631–1640. https://doi.org/10.1152/japplphysiol.91067.2008 (cited 2020 Jun 10)
    Duscha BD, Annex BH, Green HJ, Pippen AM, Kraus WE (2002) Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol 39:1170–1174
    Larsen AI, Lindal S, Aukrust P, Toft I, Aarsland T, Dickstein K (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol. 83:25–32
    Drexler H, Riede U, Münzel T, König H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759
    Lang CC, Rayos GH, Chomsky DB, Wood AJJ, Wilson JR (1997) Effect of sympathoinhibition on exercise performance in patients with heart failure. Circulation 96:238–245. https://doi.org/10.1161/01.CIR.96.1.238 (cited 2020 Jun 10)
    Deo SH, Jenkins NT, Padilla J, Parrish AR, Fadel PJ (2013) Norepinephrine increases NADPH oxidase-derived superoxide in human peripheral blood mononuclear cells via α-adrenergic receptors. Am J Physiol Integr Comp Physiol [Internet] 305:R1124–R1132. https://doi.org/10.1152/ajpregu.00347.2013 (cited 2020 Jun 10)
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708
    Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428
    Sorokin AV, Kim ER, Ovchinnikov LP (2009) Proteasome system of protein degradation and processing. Biochemistry (Mosc). 74:1411–1442
    de Oca MM, Torres SH, Loyo JG, Vazquez F, Hernandez N, Anchustegui B et al (2004) Exercise performance and skeletal muscles in patients with advanced Chagas disease. Chest 125:1306–1314
    Torres SH, Finol HJ, de Oca MM, Vasquez F, Puigbo JJ, Loyo JG (2004) Capillary damage in skeletal muscle in advanced Chagas’ disease patients. Parasitol Res 93:364–368
    Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM (2015) Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 308:H792–802
    Cunha TF, Bacurau AVN, Moreira JBN, Paixão NA, Campos JC, Ferreira JCB et al (2012) Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One. Public Library of Science; 7:e41701–e41701. Available from: https://pubmed.ncbi.nlm.nih.gov/22870245 . Accessed 3 Aug 2017
    Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L et al (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29:1067–1073
    Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopat. Am J Cardiol 80:1025–1029
    Roveda F, Middlekauff HR, Rondon MUPB, Reis SF, Souza M, Nastari L et al (2003) The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol 42:854–860
    Antunes-Correa LM, Kanamura BY, Melo RC, Nobre TS, Ueno LM, Franco FGM et al (2012) Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age. Eur J Prev Cardiol 19:822–829
    Groehs RV, Toschi-Dias E, Antunes-Correa LM, Trevizan PF, Rondon MUPB, Oliveira P et al (2015) Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients. Am J Physiol Heart Circ Physiol 308:H1096–H1102
    Fagius J, Wallin BG (1993) Long-term variability and reproducibility of resting human muscle nerve sympathetic activity at rest, as reassessed after a decade. Clin Auton Res 3:201–205
    Groehs RV, Antunes-Correa LM, Nobre TS, Alves M-JN, Rondon MUP, Barreto ACP et al (2016) Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients. Eur J Prev Cardiol 23:1599–1608
    Antunes-Correa LM, Ueno-Pardi LM, Trevizan PF, Santos MR, da Silva CHP, Franco FGM et al (2016) The influence of aetiology on the benefits of exercise training in patients with heart failure. Eur J Prev Cardiol 24:365–372. https://doi.org/10.1177/2047487316683530
    Heart rate variability: standards of measurement, physiological interpretation and clinical use (1996) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065
    De Sá Perlingeiro P, Azevedo LF, Gomes-Santos IL, Bortolotto LA, Rondon MUPB, Negrão CE et al (2016) Neurovascular control and cardiac structure in amateur runners with hypertension. Med Sci Sport Exerc 48:26–32
    Fraga R, Franco FG, Roveda F, de Matos LNJ, Braga AMFW, Rondon MUPB et al (2007) Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail 9:630–636
    Kluser Sales AR, Negrão MV, Testa L, Ferreira-Santos L, Ramalho Groehs RV, Carvalho B et al (2019) Chemotherapy acutely impairs neurovascular and hemodynamic responses in women with breast cancer. Am J Physiol Hear Circ Physiol Am Physiol Soc 317:H1–H12
    Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJNN, Fernandes T, Couto GK et al (2014) Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 307:H1655–H1666
    Dos Santos MR, Sayegh ALC, Bacurau AVN, Arap MA, Brum PC, Pereira RMR et al (2016) Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency. Mayo Clin Proc 91:575–586
    Nachlas MM, Tsou KC, de Souza E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem 5:420–436
    Bechara LRG, Moreira JBN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR et al (2014) NADPH oxidase hyperactivity induces plantaris atrophy in heart failure rats. Int J Cardiol Netherlands 175:499–507
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408
    Cohen-Solal A (1996) Cardiopulmonary exercise testing in chronic heart failure. In: Wasserman K (ed) Exercise gas exchange in heart disease. Futura Publications Company, Armonk, New York, pp 17–38
    Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131
    Negrao CE, Middlekauff HR (2008) Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 13:51–60
    Rondon E, Brasileiro-Santos MS, Moreira ED, Rondon MUPB, Mattos KC, Coelho MA et al (2006) Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Circ Physiol [Internet] 291:H2801–H2806. https://doi.org/10.1152/ajpheart.01352.2005
    Monahan KD, Tanaka H, Dinenno FA, Seals DR (2001) Central arterial compliance is associated with age- and habitual exercise–related differences in cardiovagal baroreflex sensitivity. Circulation 104:1627–1632
    Villacorta H, Bortolotto LA, Arteaga E, Mady C (2006) Aortic distensibility measured by pulse-wave velocity is not modified in patients with Chagas’ disease. J Negat Results Biomed 5:9. https://doi.org/10.1186/1477-5751-5-9
    Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–28. https://www.sciencedirect.com/science/article/pii/S0361923099002373 . Accessed 3 Aug 2017
    Liu J-L, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure. Circulation 102:1854–1862
    Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R et al (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715
    Lima MMO, Rocha MOC, Nunes MCP, Sousa L, Costa HS, Alencar MCN et al (2010) A randomized trial of the effects of exercise training in Chagas cardiomyopathy. Eur J Heart Fail [Internet] 12:866–873. https://doi.org/10.1093/eurjhf/hfq123
    Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol [Internet] 102:2389–2397. https://doi.org/10.1152/japplphysiol.01202.2006
    Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FLA, Michelin A et al (2010) Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol [Internet] 41:81–87. https://doi.org/10.1007/s10735-010-9262-x
    Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J et al (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age. Circulation 125:2716–2727
    Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Physiol [Internet] 287:C834–C843. https://doi.org/10.1152/ajpcell.00579.2003
    Okoshi MP, Romeiro FG, Paiva SAR, Okoshi K (2013) Heart failure-induced cachexia. Arq Bras Cardiol Sci 100:476–482
    Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM et al (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet (London, England). 349:1050–1053
    Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021