Exportar registro bibliográfico


Metrics:

CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement (2020)

  • Authors:
  • Autor USP: ULRICH, ALEXANDER HENNING - IQ
  • Unidade: IQ
  • DOI: 10.1007/s12015-020-09976-7
  • Subjects: CORONAVIRUS; ANTIBIÓTICOS; CÉLULAS-TRONCO; COVID-19
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s12015-020-09976-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ULRICH, Henning; PILLAT, Micheli Mainardi. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, Totowa, v. 16, p. 434–440, 2020. Disponível em: < http://dx.doi.org/10.1007/s12015-020-09976-7 > DOI: 10.1007/s12015-020-09976-7.
    • APA

      Ulrich, H., & Pillat, M. M. (2020). CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports, 16, 434–440. doi:10.1007/s12015-020-09976-7
    • NLM

      Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement [Internet]. Stem Cell Reviews and Reports. 2020 ; 16 434–440.Available from: http://dx.doi.org/10.1007/s12015-020-09976-7
    • Vancouver

      Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement [Internet]. Stem Cell Reviews and Reports. 2020 ; 16 434–440.Available from: http://dx.doi.org/10.1007/s12015-020-09976-7

    Referências citadas na obra
    Coronavirus Resource Center. (2020). Johns Hopkins University - Medicine, https://coronavirus.jhu.edu/ . Accessed on: 3/31/2020.
    Gautret, P., Lagier, J. C., Parola, P., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open‐label non‐randomized clinical trial. International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2020.105949 .
    Liu, J., Cao, R., Xu, M., et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6, 16. https://doi.org/10.1038/s41421-020-0156-0 .
    Devaux, C. A., Rolain, J. M., Colson, P., et al. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2020.105938 .
    Retallack, H., Di Lullo, E., Arias, C., et al. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences of the United States of America, 113(50):14408–14413. https://doi.org/10.1073/pnas.1618029113 .
    Madrid, P. B., Panchal, R. G., Warren, T. K., et al. (2015). Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis. Jul, 10(7), 317–326. https://doi.org/10.1021/acsinfecdis.5b00030 .
    Bosseboeuf, E., Aubry, M., Nhan, T., et al. (2018). Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals, 10(1), 6–11. https://doi.org/10.4172/1948-5964.1000173 .
    Wang, K., Chen, W., Zhou, Y. S., et al. (2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv preprint. https://doi.org/10.1101/2020.03.14.988345 .
    Yan, R., Zhang, Y., Li, Y., et al. (2020). Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. https://doi.org/10.1126/science.abb2762 .
    Crosnier, C., Bustamante, L. Y., Bartholdson, S. J., et al. (2011). Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature, 480(7378), 534–537. https://doi.org/10.1038/nature10606 .
    Zenonos, Z. A., Dummler, S. K., Müller-Sienerth, N., et al. (2015). Basigin is a druggable target for hostoriented antimalarial interventions. Journal of Experimental Medicine. https://doi.org/10.1084/jem.20150032 .
    Wilson, D. W., Goodman, C. D., Sleebs, B. E., et al. (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biology, 13, 52. https://doi.org/10.1186/s12915-015-0162-0 .
    Muralidharan, V., & Striepen, B. (2015). Teaching old drugs new tricks to stop malaria invasion in its tracks. BMC Biology, 13, 72. https://doi.org/10.1186/s12915-015-0185-6 .
    Kong, L. M., Liao, C. G., Zhang, Y., et al. (2014). A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-13-3555 .
    Toole, B. P. (2019). The CD147-Hyaluronan Axis in Cancer. The Anatomical Record. https://doi.org/10.1002/ar.24147 .
    Mattos, W., Lim, S., Russell, R., et al. (2002). Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest. https://doi.org/10.1378/chest.122.5.1543 .
    -Moheimani, F., Koops, J., Williams, T., et al. (2018). Influenza A virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respiratory Research. https://doi.org/10.1186/s12931-018-0851-7 .
    Bao, W., Min, D., Twigg, M., et al. (2010). Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications. American Journal of Physiology. Cell Physiology. https://doi.org/10.1152/ajpcell.00228.2010 .
    Wang, S., Liu, C., Liu, X., et al. (2017). Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines. Tumor Biology. https://doi.org/10.1177/1010428317718192 .
    Emingil, G., Atilla, G., Sorsa, T., et al. (2008). The effect of adjunctive subantimicrobial dose doxycycline therapy on gcf emmprin levels in chronic periodontitis. Journal of Perinatology. https://doi.org/10.1902/jop.2008.070165
    Kobayashi, Y., Wada, H., Rossios, C., et al. (2013). A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-kappaB inhibition. J Pharmacol Exp Ther, 345(1), 76-84. https://doi.org/10.1124/jpet.112.200733 .
    Vandooren, J., Knoops, S., Buzzo, J. L. A., et al. (2017). Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study. PLoS One. https://doi.org/10.1371/journal.pone.0174853 .
    -Verleden, S. E., Vandooren, J., Vos, R., et al. (2011). Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transpl Immunol. https://doi.org/10.1016/j.trim.2011.06.006 .
    Singh, S., Kubler, A., Utpal, K..et al (2014). Antimycobacterial Drugs Modulate Immunopathogenic Matrix Metalloproteinases in a Cellular Model of Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.02141-13 .
    Aguai, Z. H., Kode, A., Saslow, J. G., et al. (2007). Azithromycin Suppresses Activation of Nuclear Factor-kappa B and Synthesis of Pro-inflammatory Cytokines in Tracheal Aspirate Cells From Premature Infants. Pediatric Research. https://doi.org/10.1203/PDR.0b013e318142582d .
    Bouwman, J. J. M., Visseren, F. L. J., Bouter, P. K., et al. (2004). Azithromycin Inhibits interleukin-6 but Not Fibrinogen Production in Hepatocytes Infected With Cytomegalovirus and Chlamydia Pneumoniae. The Journal of Laboratory and Clinical Medicine, 144(1), 18–26. https://doi.org/10.1016/j.lab.2004.03.012 .
    Gielen, V., Johnston, S. L., & Edwards, M. R. (2010). Azithromycin induces anti-viral responses in bronchial epithelial cells. The European Respiratory Journal, 36, 646–654. https://doi.org/10.1183/09031936.00095809 .
    Ling, T. Y., Kuo, M. D., Li, C. L., et al. (2006). Identification of pulmonary Oct-4 + stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences, 103(25), 9530–9535. https://doi.org/10.1073/pnas.0510232103 .
    Higashi, K., Yagi, M., Arakawa, T., et al. (2015). A novel marker for undifferentiated human embryonic stem cells. Monoclon Antib Immunodiagn Immunother, 34(1), 7–11. https://doi.org/10.1089/mab.2014.0075 .
    Amati, E., Perbellini, O., Rotta, G., et al. (2018). High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Stem Cell Research & Therapy, 16(1), 10. https://doi.org/10.1186/s13287-017-0755-3 .
    – Agha, E. E., Kramann, R., Schneider, R. K., et al. (2017). Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell, 21(2), 166–177. https://doi.org/10.1016/j.stem.2017.07.011 .
    –, J., Wang, J., Wang, B. J., Yang, J. C., et al. (2020). Advances in the Research of Mechanism of Pulmonary Fibrosis Induced by Corona Virus Disease 2019 and the Corresponding Therapeutic Measures. Zhonghua Shao Shang Za Zhi, 36. https://doi.org/10.3760/cma.j.cn501120-20200307-00132 .
    Pan, Y., Guan, H., Zhou, S., et al. (2020). Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019- nCoV): a study of 63 patients in Wuhan, China. European Radiology. https://doi.org/10.1007/s00330-020-06731-x .
    Hoyles, R. K., Derrett-Smith, E. C., Khan, K., et al. (2011). An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor b receptor. American Journal of Respiratory and Critical Care Medicine, 183, 249–261. https://doi.org/10.1164/rccm.201002-0279OC .
    Hung, C., Linn, G., Chow, Y. H., et al. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 188, 820–830. https://doi.org/10.1164/rccm.201212-2297OC .
    – Rock, J. R., Barkauskas, C. E., Cronce, M. J., et al. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 108, E1475–E1483. https://doi.org/10.1073/pnas.1117988108 .
    - Kim, K. K., Kugler, M. C., Wolters, P. J., et al. (2006). Alveolar epithelial Cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America 103, 13180–13185. https://doi.org/10.1073/pnas.0605669103 .
    – Marriott, S., Baskir, R. S., Gaskill, C., et al. (2014). ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. American Journal of Physiology. Cell Physiology, 307, C684–C698. https://doi.org/10.1152/ajpcell.00114.2014 .
    Kramann, R., Schneider, R. K., DiRocco, D. P., et al. (2015). Perivascular Gli1 + progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell, 16, 51–66. https://doi.org/10.1016/j.stem.2014.11.004 .
    Xie, T., Liang, J., Liu, N., et al. (2016). Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. The Journal of Clinical Investigation, 126, 3626. https://doi.org/10.1172/JCI85328 .
    Jun, D., Garat, C., West, J., et al. (2011). The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells, 29, 725–735. https://doi.org/10.1002/stem.604 .
    Li, X., Molina-Molina, M., Abdul-Hafez, A., et al. (2008). Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology. https://doi.org/10.1152/ajplung.00009.2008 .
    Li, X., Zhang, H., Soledad-Conrad, V., et al. (2003). Bleomycin induced apoptosis of alveolar epithelial cell requires angiotensin synthesis de novo. American Journal of Physiology. Lung Cellular and Molecular Physiology. https://doi.org/10.1152/ajplung.00273.2002 .
    – Guillot, S., Delaval, P., Brinchault, G., et al. (2006). Increased Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) expression in pulmonary fibrosis. Experimental Lung Research, 32(3–4), 81–97. https://doi.org/10.1080/01902140600710512 .
    Tian, S., Hu, W., Niu, L., et al. (2020). Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology. https://doi.org/10.1016/j.jtho.2020.02.010 .
    [online] Available at: https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=stem+cell&cntry=&state=&city=&dist=. NIH U.S. National Library of Medicine. ClinicalTrial.gov. (Accessed 27 Mar 2020).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021