Exportar registro bibliográfico


Metrics:

Varieties of state interventionism in financial policy in the aftermath of the 2008 global crisis (2020)

  • Autor:
  • Autor USP: LINS, MARIA ANTONIETA DEL TEDESCO - IRI
  • Unidade: IRI
  • DOI: 10.1590/1982-3533.2020v29n2art03
  • Subjects: POLÍTICA FINANCEIRA; INTEGRAÇÃO ECONÔMICA; SISTEMA FINANCEIRO; PAÍSES EM DESENVOLVIMENTO
  • Language: Inglês
  • Abstract: Graças às lições aprendidas e às reformas implementadas após as crises financeiras do final dos anos 1990, muitas economias emergentes se mostraram relativamente resilientes na crise global de 2008. Para enfrentar a turbulência originada, foram revistas políticas para os mercados cambiais e controles de capitais. A literatura sobre os sistemas financeiros da América Latina e sobre as reformas dos bancos centrais enfatiza o papel de atores e pressões internacionais sobre o policymaking. O trabalho argumenta que questões domésticas foram determinantes da política financeira após a crise de 2008, mesmo em países como Argentina, Brasil e México, com distintos arranjos institucionais e trajetórias macroeconômicas. Por meio de uma análise de estudo de caso comparativo, conclui-se que as políticas cambial e de controle de capitais dos três países não se alinham com uma visão internacional dominante e tampouco convergem com a posição do FMI sobre câmbio e a gestão dos fluxos de capital. Na busca por maior autonomia e atendendo às prioridades políticas domésticas, cada um dos três países adotou medidas distintas
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1590/1982-3533.2020v29n2art03 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LINS, Maria Antonieta Del Tedesco. Varieties of state interventionism in financial policy in the aftermath of the 2008 global crisis. Economia e Sociedade, Campinas, SP, Unicamp, v. 29, n. 2(69), 2020. Disponível em: < http://www.economia.unicamp.br/images/arquivos/artigos/ES/69/3_LINS.pdf > DOI: 10.1590/1982-3533.2020v29n2art03.
    • APA

      Lins, M. A. D. T. (2020). Varieties of state interventionism in financial policy in the aftermath of the 2008 global crisis. Economia e Sociedade, 29( 2(69). doi:10.1590/1982-3533.2020v29n2art03
    • NLM

      Lins MADT. Varieties of state interventionism in financial policy in the aftermath of the 2008 global crisis [Internet]. Economia e Sociedade. 2020 ; 29( 2(69):Available from: http://www.economia.unicamp.br/images/arquivos/artigos/ES/69/3_LINS.pdf
    • Vancouver

      Lins MADT. Varieties of state interventionism in financial policy in the aftermath of the 2008 global crisis [Internet]. Economia e Sociedade. 2020 ; 29( 2(69):Available from: http://www.economia.unicamp.br/images/arquivos/artigos/ES/69/3_LINS.pdf

    Referências citadas na obra
    Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustainable Energy Rev. 21, 506–523 (2013)
    Mesfun, S., Lundgren, J., Grip, C.E., Toffolo, A., Nilsson, R.L.K., Rova, U.: Black liquor fractionation for biofuels production – A techno-economic assessment. Bioresour. Technol. 166, 508–517 (2014)
    Gouveia, S.L., Fernández-Costas, C., Sanromán, M.A., Moldes, D.: Polymerization of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: Effect of operational conditions and black liquor origin. Bioresour. Technol. 131, 288–294 (2013)
    Laurichesse, S., Avérous, L.: Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39, 1266–1290 (2014)
    Diehl, B.G., Brown, N.R., Frantz, C.W., Lumadue, M.R., Cannon, F.: Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins. Carbon 60, 531–537 (2013)
    Xu, G., Yan, G., Yang, J.: An integrated green process for beneficial utilization of pulping black liquor. Waste Biomass Valor. 4, 497–502 (2013). https://doi.org/10.1007/s12649-012-9177-8
    Delgado, N., Ysambertt, F., Chávez, G., et al.: Valorization of kraft lignin of different molecular weights as surfactant agent for the oil industry. Waste Biomass Valorization 10, 3383–3395 (2019). https://doi.org/10.1007/s12649-018-0352-4
    Domínguez-Robles, J., Palenzuela, M.V., Sánchez, R., et al.: Coagulation–flocculation as an alternative way to reduce the toxicity of the black liquor from the paper industry: thermal valorization of the solid biomass recovered. Waste Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00795-7
    Mänttäri, M., Lahti, J., Hatakka, H., Louhi-Kultanen, M., Kallioinen, M.: Separation phenomena in UF and NF in the recovery of organic acids from kraft black liquor. J. Membr. Sci. 49, 84–91 (2015)
    Pizzi, A.: Types, processing and properties of bioadhesives for wood and fibers. In: Waldron, Keith, Whitworth, Sarah (eds.) Advances in biorefineries: Biomass and waste supply chain exploitation, pp. 736–770. Woodhead Publishing Ltd, Cambridge (2014)
    Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S.: The influencing of pulping conditions on the structure of acetosolv eucalyptus lignins. J. Wood Chem. Technol. 17, 147–162 (1997)
    Amaral-Labat, G.A., Gonçalves, A.R.: Oxidation in acidic medium of lignins from agricultural residues. Appl. Biochem. Biotechnol. 148, 151–161 (2008)
    Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M.: Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cell Chem. Technol. 46, 449–455 (2012)
    Job, N., Pirard, R., Marien, J., Pirard, J.P.: Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42, 619–628 (2004)
    Marsh, J.T.: Cellulose and formaldehyde. J. Soc. Dyers Colour 75, 244–252 (1959)
    Park, H., Park, K., Shalaby, W.S.W.: Biodegradable Hydrogels for Drug Delivery. CRC Press, Technomic, Boca Raton (1993)
    Mirasol, J.R., Cordero, T., Rodriguez, J.J.: Preparation and characterization of activated caibons from eucalyptus krafi-lignin. Carbon 31, 87–95 (1993)
    Dillon, R., Srinivasan, S., Aricò, A.S., Antonucci, V.: International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127, 112–126 (2004)
    Antolini, E.: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 88, 1–24 (2009)
    Godoi, D.R.M., Villullas, H.M., Zhu, F.-C., Jiang, Y.-X., Sun, S.-G., Guo, J., Sun, L., Chen, R.: A comparative investigation of metal-suporte interactions on the catalytic activity of Pt nanoparticles for ethanol oxidations in alkaline medium. J. Power Sources 311, 81–90 (2016)
    Muench, F., Oezaslan, M., Rauber, M., Kaserer, S., Fuchs, A., Mankel, E., Brötz, J., Strasser, P., Roth, C., Ensinger, W.: Electroless synthesis of nanostructured nickel and nickelboron tubes and their performance as unsupported ethanol electrooxidation catalysts. J. Power Sources 222, 243–252 (2013)
    Sun, S., Jusys, Z., Behm, R.J.: Electrooxidation of ethanol on Pt-based and Pd-based catalysts in alkaline electrolyte under fuel cell relevant reaction and transport conditions. J. Power Sources 231, 122–133 (2013)
    Geraldes, A.N., da Silva, D.F., Pino, E.S., da Silva, J.C.M., de Souza, R.F.B., Hammer, P., Spinacé, E.V., Neto, A.O., Linardi, M., dos Santos, M.C.: Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim. Acta 111, 455–465 (2013)
    Modibedi, R.M., Masombuka, T., Mathe, M.K.: Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 4664–4672 (2011)
    Antolini, E., Gonzalez, E.R.: Alkaline direct alcohol fuel cells. J. Power Sources 195, 3431–3450 (2010)
    Saldan, I., Semenyuk, Y., Marchuk, I., Reshetnyak, O.: Chemical synthesis and application of palladium nanoparticles. J. Mater. Sci. 50, 2337–2354 (2015)
    Korzec, M., Bartczak, P., Niemczyk, A., Szade, J., Kapkowski, M., Zenderowska, P., Balin, K., Lelatko, J., Polanski, J.: Performance characteristics of air-breathing anion-exchange membrane direct ethanol fuel cells. J. Catal. 313, 1–8 (2014)
    Ozturk, Z., Sen, F., Sen, S., Gokagac, G.: The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J. Mater. Sci. 47, 8134–8144 (2012)
    Hibbitts, D.D., Neurock, M.: Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts. J. Catal. 299, 261–271 (2013)
    Zalineeva, A., Serov, A., Serov, M.X., Martinez, U., Artyushkova, K., Baranton, S., Coutanceau, C., Atanassov, P.: Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochem. Commun. 57, 48–51 (2015)
    Liu, F., Zhang, X.B., Haussler, D., Jager, W., Yi, G.F., Cheng, J.P., Tao, X.Y., Luo, Z.Q., Zhou, S.M.: TEM characterization of metal and metal oxide particles supported by multi-wall carbon nanotubes. J. Mater. Sci. 41, 4523–4531 (2006)
    Liu, J., Zhou, H., Wang, Q., Zeng, F., Kuang, Y.: Reduced graphene oxide supported palladium–silver bimetallic nanoparticles for ethanol electro-oxidation in alkaline media. J. Mater. Sci. 47, 2188–2194 (2012)
    Jou, L.-S., Chang, J.-K., Twhang, T.-J., Sun, I.-W.: Electrodeposition of Palladium–Copper Films from 1-Ethyl-3-methylimidazolium Chloride–Tetrafluoroborate Ionic Liquid on Indium Tin Oxide Electrodes. J. Electrochem. Soc. 156, D193–D197 (2009)
    Cuña, A., Plascencia, C.R., Leal da Silva, E., Marcuzzo, J., Khan, S., Tancredi, N., Baldan, M.R., Malfatti, C.F.: Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal. B 202, 95–103 (2017)
    Jongsomjit, S., Prapainainar, P., Sombatmankhong, K.: Synthesis and characterisation of Pd–Ni–Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ion. 288, 147–153 (2016)
    Parreira, L.S., da Silva, J.C.M., D’Villa-Silva, M., Simões, F.C., Garcia, S., Gaubeur, I., Cordeiro, M.A.L., Leite, E.R., dos Santos, M.C.: PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study. Electrochim. Acta 96, 243–252 (2013)
    Ciszewski, A., Sron, K., Stepniak, I., Milczarek, G., Nickel: (II) lignosulfonate as precursor for the deposition of nickel hydroxide nanoparticles on a glassy carbon electrode for oxidative electrocatalysis. Electrochim. Acta 134, 355–362 (2014)
    Vaithilingam, S., Ramanujam, T.M.: Development of rice straw black liquor based porous carbon-poly(aniline-co-methoxy aniline) as supporting for electrochemical performances of alcohol oxidations. Ionics. 24, 3923–3935 (2018)
    Zhao, X., Muench, F., Schaefer, S., Brötz, J., Duerrschnabel, M., Molina-Luna, L., Kleebe, H.-J., Liu, S., Tan, J., Ensinger, W.: Electroless decoration of macroscale foam with nickel nano-spikes: a scalable route toward efficient catalyst electrodes. Electrochem. commun 65, 39–43 (2016)
    ASTM E1755–01(2015) - Standard Test Method for Ash in Biomass
    Brunauer, S., Emmet, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)
    Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989)
    Gregg, S.J., Sing, K.S.W.: Adsorption: Surface Area and Porosity. Academic Press, London (1982)
    Tarazona, P.: Solid-fluid transition and interfaces with density functional approaches. Surf. Sci. 331–333, 989–994 (1995)
    Leal da Silva, E., Cuña, A., Khan, S., et al.: Biomass Derived Carbon as Electrocatalyst Support for Ethanol Oxidation Reaction in Alkaline Medium: Electrochemical and Spectroelectrochemical Characterization. Waste Biomass Valor (2018). https://doi.org/10.1007/s12649-018-0510-8
    Gea, G., Murillo, M.B., Arauzo, J.: Thermal Degradation of Alkaline Black Liquor from Straw. Thermogravimetric Study. Ind. Eng. Chem. Res. 41, 4714–4721 (2002)
    Sebio-Puñal, T., Naya, S., López-Beceiro, J., Tarrío-Saavedra, J., Artiaga, R.: Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J. Therm. Anal. Calorim. 109, 1163–1167 (2012)
    Tejado, A., Peña, C., Labidi, J., Echeverria, J.M., Mondragon, I.: Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 98, 1655–1663 (2007)
    Alén, R., Rytkönen, S., McKeough, P.: Thermogravimetric behavior of black liquors and their organic constituents. J. Anal. Appl. Pyrol. 31, 1–13 (1995)
    Pizzi, A.: Advanced Wood Adhesives Technology. Marcel Dekker Inc., New York (1994)
    Seo, J., Park, H., Shin, K., Baeck, S.H., Rhym, Y., Shim, S.E.: Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template. Carbon. 76, 357–367 (2014)
    Arico, E., Tabuti, F., Fonseca, F.C., de Florio, D.Z., Ferlauto, A.S.: Carbothermal reduction of the YSZ–NiO solid oxide fuel cell anode precursor by carbon-based materials. J. Therm. Anal. Calorim. 97, 157–161 (2009)
    Lourençon, T.V., Hansel, F.A., da Silva, T.A., Ramos, L.P., de Muniz, G.I.B., Magalhães, W.L.E.: Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep. Purif. Technol. 154, 82–88 (2015)
    Ibrahim, M.N.M., Zakaria, N., Sipaut, C.S., Sulaiman, O., Hashim, R.: Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 86, 112–119 (2011)
    Celzard, A., Fierro, V., Amaral-Labat, G.: Adsorption by carbon gels Adsorption by Carbons ed J M D Tascon, pp. 205–244. Elsevier, Amsterdam (2012)
    Marsh, H., Rodríguez-Reinoso, R.F.: Activated Carbons. Elsevier, Oxford (2006)
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemienewska, T.: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 57, 603–619 (1985)
    Cuña, A., Tancredi, N., Bussi, J., Deiana, C., Sardella, M.F., Barranco, V., Rojo, J.M.: E. grandis as a biocarbons precursor for supercapacitor electrode application. Waste Biomass Valorization 5, 305–313 (2014)
    Leal da Silva, E., Ortega Vega, M.R., Correa, P.S., Cuña, A., Tancredi, N., Malfatti, C.F.: Influence of activated carbon porous texture on catalyst activity for ethanol electro-oxidation. Int. J. Hydrogen Energ. 39, 14760–14767 (2014)
    Pantea, D., Darmstadt, H., Kaliaguine, S., Roy, C.: Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl. Surf. Sci. 217, 181–193 (2003)
    Goula, M.A., Charisiou, N.D., Papageridis, K.N., Delimitis, A., Pachatouridou, E., Iliopoulou, E.F.: Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. Int. J. Hydrogen Energy 40, 9183–9200 (2015)
    Xu, C., Hu, Y., Rong, J., Jiang, S.P., Liu, Y.: Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem. Comm. 9, 2009–2012 (2007)
    Wicklein, B., Arranz, J., Mayoral, A., Aranda, P., Huttel, Y., Ruiz-Hitzky, E.: Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Adv. 7, 42203–42210 (2017)
    Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., Yi, B.: High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56, 146–154 (2013)
    Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F.: Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995–2001 (2000)
    Biniak, S., Szymanski, G., Siedlewski, J., Swiatkowski, A.: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997)
    Bandosz, T.J., Ania, C.O.: Surface chemistry of activated carbons and its characterization. In: Bandosz, T.J. (ed.) Activated Carbon Surfaces in Environmental Remediation, pp. 159–229. Elsevier, New York (2006)
    Xing, W., Qiao, S., Wu, X., Gao, X., Zhou, J., Zhuo, S., Hartono, S.B., Hulicova-Jurcakova, D.: Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196, 4123–4127 (2011)
    Dutta, A., Adhikary, R., Broekmann, P., Datta, J.: Intelligent catalytic support by Ni/NiO/Ni(OH)2 in low level of Pd/Pt boosting the performance of alkaline DEFC. Appl. Catal. B-Environ. 257, 117847 (2019)
    Ureta-Zañartu, M.S., Berríos, C., Pavez, J., Zagal, J., Gutiérrez, C., Marco, J.F.: Electrooxidation of 2-chlorophenol on polyNiTSPc-modified glassy carbon electrodes. J. Electroanal. Chem. 553, 147–156 (2003)
    Castro, C., Millan, A., Palacio, F.: Nickel oxide magnetic nanocomposites in an imine polymer matrix. J. Mater. Chem. 10, 1945–1947 (2000)
    Zhang, X., Shi, W., Zhu, J., Zhao, W., Ma, J., Mhaisalkar, S., Maria, T.L., Yang, Y., Zhang, H., Hng, H.H., Yan, Q.: Synthesis of Porous NiO Nanocrystals with Controllable Surface Area and Their Application as Supercapacitor Electrodes. Nano Res. 3, 643–652 (2010)
    Song, P., Wen, D., Guo, Z.X., Korakianitis, T.: Oxidation investigation of nickel nanoparticles. Phys. Chem. Chem. Phys. 10, 5057–5065 (2008)
    Compton, R.G., Banks, C.E.: Understanding Voltammetry. Imperial College Press, London (2011)
    Fleischmann, M., Korinek, K., Pletcher, D.: The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 31, 39–49 (1971)
    Zhan, J., Cai, M., Zhang, C., Wang, C.: Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 154, 70–76 (2015)
    Sheikh, A.M., Correa, P.S., LealdaSilva, E., Savaris, I.D., Amico, S.C., Malfatti, C.F.: Energy conversion using Pd-based catalysts in direct ethanol fuel cell. Renew. Energy Power Qual. J. 1(11), 342–345 (2013)
    Shen, S.Y., Zhao, T.S., Xu, J.B., Li, Y.S.: Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 1001–1006 (2010)
    Gupta, U.K., Pramanik, H.: Electrooxidation study of pure ethanol/methanol and their mixture for the application in direct alcohol alkaline fuel cells (DAAFCs). Int. J. Hydrogen Energia 44, 421–435 (2019)
    Carlson, G., Lewis, D., McKinley, K., Richardson, J. Tillotson T.: Aerogel commercialization:technology, markets and costs. J. Non-Cryst Solids 186, 372–379 (1995).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020