Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions (2019)
- Authors:
- USP affiliated authors: RUAS, MARIA APARECIDA SOARES - ICMC ; TRIVEDI, SAURABH - ICMC
- Unidade: ICMC
- Subjects: SINGULARIDADES; GEOMETRIA ALGÉBRICA; TEORIA DAS SINGULARIDADES
- Keywords: Bi-Lipshitz contact equivalence; Thom-Mather Stratification; Unimodular Strata; Boundary of the Nice Dimensions; Thom-Levine Lemma
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Somerville
- Date published: 2019
- Source:
- Título: Asian Journal of Mathematics
- ISSN: 1093-6106
- Volume/Número/Paginação/Ano: v. 23, n. 6, p. 953-968, Dec. 2019
-
ABNT
RUAS, Maria Aparecida Soares e TRIVEDI, Saurabh. Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions. Asian Journal of Mathematics, v. 23, n. 6, p. 953-968, 2019Tradução . . Disponível em: https://www.intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0023/0006/a004/index.php. Acesso em: 26 jan. 2026. -
APA
Ruas, M. A. S., & Trivedi, S. (2019). Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions. Asian Journal of Mathematics, 23( 6), 953-968. Recuperado de https://www.intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0023/0006/a004/index.php -
NLM
Ruas MAS, Trivedi S. Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions [Internet]. Asian Journal of Mathematics. 2019 ; 23( 6): 953-968.[citado 2026 jan. 26 ] Available from: https://www.intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0023/0006/a004/index.php -
Vancouver
Ruas MAS, Trivedi S. Bi-Lipschitz geometry of contact orbits in the boundary of the nice dimensions [Internet]. Asian Journal of Mathematics. 2019 ; 23( 6): 953-968.[citado 2026 jan. 26 ] Available from: https://www.intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0023/0006/a004/index.php - Deformation retracts to intersections of Whitney stratifications
- Tipo topologico de germes pre-quase homogeneos
- Note on determinacy
- Topological triviality of families of sections of analytic varieties
- M-deformations of A-simple 'sigma POT n-p+1'-germs from Rn to Rp, n >_p
- Singularity theory and forced symmetry breaking in equations
- 'A ind.e'-codimension of germs of analytic curves
- Geometry of surfaces in 4-spaces from a contact viewpoint
- Polyhedron of equisingularity of germms of hypersurfaces
- Germes finitamente determinados
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3002467.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
