The 6th Brazilian School of Probability was held in Ubatuba–SP in August. [Apresentação/Foreword] (2003)
- Authors:
- USP affiliated authors: FONTES, LUIZ RENATO GONCALVES - IME ; MACHADO, FABIO PRATES - IME
- Unidade: IME
- DOI: 10.1007/s00574-003-0017-0
- Assunto: PROBABILIDADE
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2003
- Source:
- Título: Bulletin of the Brazilian Mathematical Society
- ISSN: 1678-7544
- Volume/Número/Paginação/Ano: v. 34, n. 3, p. 347-348, 2003
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
FONTES, Luiz Renato e MACHADO, Fábio Prates. The 6th Brazilian School of Probability was held in Ubatuba–SP in August. [Apresentação/Foreword]. Bulletin of the Brazilian Mathematical Society. Heidelberg: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s00574-003-0017-0. Acesso em: 10 jan. 2026. , 2003 -
APA
Fontes, L. R., & Machado, F. P. (2003). The 6th Brazilian School of Probability was held in Ubatuba–SP in August. [Apresentação/Foreword]. Bulletin of the Brazilian Mathematical Society. Heidelberg: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s00574-003-0017-0 -
NLM
Fontes LR, Machado FP. The 6th Brazilian School of Probability was held in Ubatuba–SP in August. [Apresentação/Foreword] [Internet]. Bulletin of the Brazilian Mathematical Society. 2003 ; 34( 3): 347-348.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00574-003-0017-0 -
Vancouver
Fontes LR, Machado FP. The 6th Brazilian School of Probability was held in Ubatuba–SP in August. [Apresentação/Foreword] [Internet]. Bulletin of the Brazilian Mathematical Society. 2003 ; 34( 3): 347-348.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00574-003-0017-0 - The critical probability for the frog model is not a monotonic function of the graph
- On an epidemic model on finite graphs
- Preface
- Null recurrence and transience for a binomial catastrophe model in random environment
- Dispersion as a survival strategy
- Local and global survival for nonhomogeneous random walk systems on Z
- Extinction for an epidemic model on finite and infinite graphs
- Self-avoiding Random walks on homogeneous trees
- Information recovery from observations by a random walk having jump distribution with exponential tails
- A stochastic model of evolution
Informações sobre o DOI: 10.1007/s00574-003-0017-0 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
