On Tuza's conjecture for triangulations and graphs with small treewidth (2019)
- Authors:
- Autor USP: FERNANDES, CRISTINA GOMES - IME
- Unidade: IME
- DOI: 10.1016/j.entcs.2019.08.016
- Assunto: TEORIA DOS GRAFOS
- Keywords: Triangle transversal; triangle packing; treewidth; triangulation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Electronic Notes in Theoretical Computer Science
- ISSN: 1571-0661
- Volume/Número/Paginação/Ano: v. 346, p. 171-183, 2019
- Conference titles: Latin and American Algorithms, Graphs and Optimization Symposium - LAGOS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BOTLER, Fábio Happ e FERNANDES, Cristina Gomes e GUTIERREZ, Juan. On Tuza's conjecture for triangulations and graphs with small treewidth. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.entcs.2019.08.016. Acesso em: 20 jan. 2026. , 2019 -
APA
Botler, F. H., Fernandes, C. G., & Gutierrez, J. (2019). On Tuza's conjecture for triangulations and graphs with small treewidth. Electronic Notes in Theoretical Computer Science. Amsterdam: Elsevier. doi:10.1016/j.entcs.2019.08.016 -
NLM
Botler FH, Fernandes CG, Gutierrez J. On Tuza's conjecture for triangulations and graphs with small treewidth [Internet]. Electronic Notes in Theoretical Computer Science. 2019 ; 346 171-183.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1016/j.entcs.2019.08.016 -
Vancouver
Botler FH, Fernandes CG, Gutierrez J. On Tuza's conjecture for triangulations and graphs with small treewidth [Internet]. Electronic Notes in Theoretical Computer Science. 2019 ; 346 171-183.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1016/j.entcs.2019.08.016 - This volume contains the papers presented at LAGOS 2023, the XII Latin-American Algorithms, Graphs and Optimization Symposium. [Prefácio]
- Approximation algorithms for the max-buying problem with limited supply
- Approximating minimum k-section in trees with linear diameter
- A better approximation algorithm for finding planar subgraphs
- Hitting all longest cycles in a graph
- Trajectory clustering of points in R
- Multicuts in unweighted digraphs with bounded degree and bounded tree-width
- Maximum series-parallel subgraph
- Transversals of longest paths
- Improved approximation algorithms for capacitated fault-tolerant k-Center
Informações sobre o DOI: 10.1016/j.entcs.2019.08.016 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3000179.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
