Exportar registro bibliográfico


Metrics:

Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations (2020)

  • Authors:
  • USP affiliated author: BRAGA, ATAUALPA ALBERT CARMO - IQ
  • School: IQ
  • DOI: 10.1007/s00214-020-02588-x
  • Subjects: CATÁLISE; LIGANTES
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s00214-020-02588-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Vitor Hugo Menezes da et al. Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theoretical Chemistry Accounts, v. 139, p. 1-13 art. 77, 2020Tradução . . Disponível em: https://dx.doi.org/10.1007/s00214-020-02588-x. Acesso em: 25 jun. 2022.
    • APA

      Silva, V. H. M. da, Oliveira, C. C., Correia, C. R. D., & Braga, A. A. C. (2020). Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theoretical Chemistry Accounts, 139, 1-13 art. 77. doi:10.1007/s00214-020-02588-x
    • NLM

      Silva VHM da, Oliveira CC, Correia CRD, Braga AAC. Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations [Internet]. Theoretical Chemistry Accounts. 2020 ; 139 1-13 art. 77.[citado 2022 jun. 25 ] Available from: https://dx.doi.org/10.1007/s00214-020-02588-x
    • Vancouver

      Silva VHM da, Oliveira CC, Correia CRD, Braga AAC. Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations [Internet]. Theoretical Chemistry Accounts. 2020 ; 139 1-13 art. 77.[citado 2022 jun. 25 ] Available from: https://dx.doi.org/10.1007/s00214-020-02588-x

    Referências citadas na obra
    Heck RF (1982) Palladium-catalyzed vinylation of organic halides. Org React 27:345
    Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009
    Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33:314–321
    Knowles JP, Whiting A (2007) The Heck-Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44
    Oestreich M (2009) The Mizoroki–Heck reaction. In: Oestreich M (ed), vol 1, Wiley, Chichester
    Mizoroki T, Mori K, Ozaki A (1971) Arylation of olefin with aryl iodide catalyzed by palladium. Bull Chem Soc Jpn 44:581
    Heck RF, Nolley JP (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322
    Mori K, Mizoroki T, Ozaki A (1973) Arylation of olefin with iodobenzene catalyzed by palladium. Bull Chem Soc Jpn 46:1505–1508
    Shibasaki M, Boden CDJ, Kojima A (1997) The asymmetric Heck reaction. Tetrahedron 53:7371–7395
    Dounay AB, Oberman LE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103:2945–2964
    Bartók M (2010) Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts. Chem Rev 110:1663–1705
    Roglans A, Pla-Quintana A, Moreno-Mañas M (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 106:4622–4643
    Taylor JG, Moro AV, Correia CRD (2011) Evolution and synthetic applications of the Heck-matsuda reaction: the return of arenediazonium salts to prominence. Eur J Org Chem 2011:1403–1428
    Felpin F-X, Nassar-Hardy L, Callonnec FL, Fouquet E (2011) Recent advances in the Heck–Matsuda reaction in heterocyclic chemistry. Tetrahedron 67:2815
    Cartney DM, Guiry PJ (2011) The asymmetric Heck and related reactions. Soc Rev 40:5122–5150
    Correia CRD, Oliveira CC, Salles AG Jr, Santos EA (2012) The first examples of the enantioselective Heck–Matsuda reaction: arylation of unactivated cyclic olefins using chiral bisoxazolines. Tetrahedron Lett 53:3325–3328
    Oliveira CC, Angnes RA, Correia CRD (2013) Intermolecular enantioselective Heck-matsuda arylations of acyclic olefins: application to the synthesis of β-aryl-γ-lactones and β-aryl aldehydes. J Org Chem 78:4373–4385
    Silva AR, Polo EC, Martins NC, Correia CRD (2018) Enantioselective oxy-Heck–matsuda arylations: expeditious synthesis of dihydrobenzofuran systems and total synthesis of the neolignan (−)-conocarpan. Adv Synth Cat 360:346–365
    Carmona RC, Köster OD, Correia CRD (2018) Chiral N,N′ ligands enabling palladium-catalyzed enantioselective intramolecular Heck–Matsuda carbonylation reactions by sequential migratory and CO insertions. Angew Chem Int Ed 57:12067–12070
    Reddi Y, Tsai C, Avila CM, Toste FD, Sunoj RB (2019) Harnessing noncovalent interactions in dual catalytic enantioselective Heck–Matsuda arylation. J Am Chem Soc 141:2998
    Kattela S, de Lucca EC, Correia CRD (2018) Enantioselective synthesis of phthalides and isochromanones via Heck–Matsuda arylation of dihydrofurans. Chem Eur J 24:17691–17696
    Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q (2019) Enantioselective synthesis of 2-oxindole spirofused lactones and lactams by Heck/carbonylative cyclization sequences: method development and applications. Angew Chem Int Ed 58:9225–9229
    Werner EW, Mei T-S, Burckle AJ, Sigman MS (2012) Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338:1455–1458
    Oliveira CC, Pfaltz A, Correia CRD (2015) Quaternary stereogenic centers through enantioselective Heck arylation of acyclic olefins with aryldiazonium salts: application in a concise synthesis of (R)-verapamil. Angew Chem Int Ed 54:14036–14039
    Cabri W, Candiani I (1995) Recent developments and new perspectives in the Heck reaction. Acc Chem Res 28:2–7
    von Schenck H, Kermark B, Svensson M (2003) Electronic control of the regiochemistry in the Heck reaction. J Am Chem Soc 125:3503–3508
    Deeth RJ, Smith A, Brown JM (2004) Electronic control of the regiochemistry in palladium-phosphine catalyzed intermolecular Heck reactions. J Am Chem Soc 126:7144–7151
    Felpin F-X, Miqueu K, Sotiropoulos J-M, Fouquet E, Ibarguren O, Laudien J (2010) Temperature, ligand- and base-free Heck reactions of aryl diazonium salts at low palladium loading: sustainable preparation of substituted stilbene derivatives. Chem Eur J 16:5191–5204
    Shen J, Xu B, Su M, Zhang W (2018) Branched-selective decarboxylative Heck reaction with electronically unbiased olefins. Eur J Org Chem 2018:2768–2773
    Wang Y, Qu S, Wang Z, Wang X (2014) A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities. J Am Chem Soc 136:986–998
    Xu L, Hilton MJ, Zhang X, Norrby P-O, Wu Y-D, Sigman MS, Wiest O (2014) Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J Am Chem Soc 136:1960–1967
    Hilton M, Xu L-P, Norrby P-O, Wu Y-D, Wiest O, Sigman MS (2014) Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols. J Org Chem 79:11841–11850
    Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. J Phys Rev 140:A1133
    Yu HS, Li SL, Truhlar D (2016) Perspective: Kohn–Sham density functional theory descending a staircase. J. Chem. Phys 145:130901
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT
    Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241
    Sperge T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem Rev 115(17):9532–9586
    Aoto Y, de Lima Batista AP, Köhn A, de Oliveira-Filho AGS (2017) how to arrive at accurate benchmark values for transition metal compounds: Computation or experiment? J Chem Theory Comput 13(11):5291–5316
    Begner A, Dolg M, Küchle W, Stoll H, Preu H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–1. Mol Phys 80:1431–1441
    Weigend F, Ahrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305
    Hratchian HP, Schlegel HB (2005) Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method. J Chem Theory Comp 1:61–69
    Marenich AV, Cramer CJ, Truhlar D (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396
    Farshadfar K, Chipman A, Hosseini H, Yates BF, Ariafard A (2019) A modified cationic mechanism for PdCl2-catalyzed transformation of a homoallylic alcohol to an allyl ether. Organometallics 38:152953–152962
    Ansell MB, Menezes da Silva VH, Heerdt G, Braga AAC, Spencer J, Navarro O (2016) An experimental and theoretical study into the facile, homogenous (N-heterocyclic carbene) 2-Pd (0) catalyzed diboration of internal and terminal alkynes. Catal Sci Technol 6:7461–7467
    Reed A, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:6899–6926
    Bäcktorp C, Norrby P-O (2010) Trans effects in the Heck reaction—a model study. J Mol Catal A Chem 328:108–113
    Henriksen ST, Norrby P-O, Kaukoranta P, Andersson PG (2008) Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium- catalyzed intermolecular Heck coupling. J Am Chem Soc 130:10414–10421
    Menezes da Silva VH, de Lima Batista AP, Navarro O, Braga AAC (2017) Theoretical study on selectivity trends in (N-heterocyclic carbene)-Pd catalyzed mizoroki-Heck reactions: exploring density functionals methods and molecular models. J Comput Chem 38:2371–2377
    Oliveira JM, Angnes RA, Khan IU, Polo EC, Heerdt G, Servilha BM, Menezes da Silva VH, Braga AAC, Correia CRD (2018) Enantioselective, noncovalent, substrate-directable Heck-matsuda and oxidative Heck arylations of unactivated five-membered carbocyclic olefins. Chem Eur J 24:11738
    Weaver MN, Janicki SZ, Petillo PA (2001) Ab initio calculation of inner-sphere reorganization energies of arenediazonium ion couples. J Org Chem 66:1138–1145
    Bonney KJ, Schoenebeck F (2014) Experiment and computation: a combined approach to study the reactivity of palladium complexes in oxidation states 0 to IV. Chem Soc Rev 43:6609
    Senn HM, Ziegler T (2004) Oxidative addition of aryl halides to palladium(0) complexes: a density-functional study including solvation. Organometallics 23:2980
    Fitton P, Johnson MP, McKeon JE (1968) Oxidative additions to palladium(0). Chem Commun 1:6
    Menezes da Silva VH, Braga AAC, Cundari T (2016) N-heterocyclic carbene based nickel and palladium complexes: A DFT comparison of the Mizoroki–Heck catalytic cycles. Organometallics 35:3170–3181
    Guest D, Menezes da Silva VH, de LimaBatista AP, Roe M, Braga AAC, Navarro O (2015) (N-Heterocyclic Carbene)-palladate complexes in anionic Mizoroki–Heck coupling cycles: a combined experimental and computational study. Organometallics 34:2643
    Ariafard A, Lin Z (2006) Understanding the relative easiness of oxidative addition of aryl and alkyl halides to palladium(0). Organometallics 25:4030–4033
    Menezes da Silva VH, Morgon N, Correia CRD, Braga AAC (2019) DFT perspective on the selectivity and mechanism of ligand-free Heck reaction involving allylic esters and arenediazonium salts. J Organomet Chem 896:5–15
    Ryu H, Park J, Kim HK, Park JY, Kim S-T, Bailk M-H (2018) Pitfalls in Computational Modeling of Chemical Reactions and How To Avoid Them. Organometallics 37(19):3228–3239
    Harvey J, Himo F, Maseras F, Perrin L (2019) Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal 8:6803–6813
    Besora M, Braga AAC, Ujaque G, Maseras F, Lledós A (2011) The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theor Chem Acc 128:639–646
    Santoro S, Kalek M, Huang F, Himo F (2016) Elucidation of mechanisms and selectivities of metal-catalyzed reactions using quantum chemical methodology. Acc Chem Res 49:1006–1018
    Mitoraj PM, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975
    Schneider FSS, Segala M, Caramoni GF, da Silva EH, Parreira RLT, Schrekker HS, van Leeuwen PWNM (2018) How do secondary phosphine oxides interact with silver nanoclusters? insights from computation. J Phys Chem C 122(37):21449–21461
    Deegan MM, Muldoon JA, Hughes RP, Gluek DS, Rheingold AL (2018) Synthesis and structure of metal complexes of P-stereogenic chiral phosphiranes: an EDA-NOCV analysis of the donor-acceptor properties of phosphirane ligands. Organometallics 37(9):1473–1482
    Caramoni GF, Ortolan AO, Parreira RLT, da Silva EH (2015) Ruthenium nitrosyl complexes containing pyridine-functionalized carbenes—a theoretical insight. J Organomet Chem 799–800:54–60

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022