Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks (2020)
- Authors:
- Autor USP: KON, FABIO - IME
- Unidade: IME
- DOI: 10.1109/E-TEMS46250.2020.9111707
- Subjects: APRENDIZADO COMPUTACIONAL; APRENDIZAGEM PROFUNDA; ANÁLISE DE DADOS; ANÁLISE DE SÉRIES TEMPORAIS
- Keywords: data science; data visualization; bike-sharing systems; graph mining; time series prediction; recurrent neural networks; convolutional neural networks; shareable cities; urban informatics
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2020
- Source:
- Título: Proceedings
- Conference titles: IEEE European Technology and Engineering Management Summit - E-TEMS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LJUBENKOV, Davor e KON, Fábio e RATTI, Carlo. Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks. 2020, Anais.. Piscataway: IEEE, 2020. Disponível em: https://doi.org/10.1109/E-TEMS46250.2020.9111707. Acesso em: 21 fev. 2026. -
APA
Ljubenkov, D., Kon, F., & Ratti, C. (2020). Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks. In Proceedings. Piscataway: IEEE. doi:10.1109/E-TEMS46250.2020.9111707 -
NLM
Ljubenkov D, Kon F, Ratti C. Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks [Internet]. Proceedings. 2020 ;[citado 2026 fev. 21 ] Available from: https://doi.org/10.1109/E-TEMS46250.2020.9111707 -
Vancouver
Ljubenkov D, Kon F, Ratti C. Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks [Internet]. Proceedings. 2020 ;[citado 2026 fev. 21 ] Available from: https://doi.org/10.1109/E-TEMS46250.2020.9111707 - Dynamic resource management and automatic configuration of distributed component systems
- Using performance forecasting to accelerate elasticity
- Designing a maturity model for software startup ecosystems
- Dynamic resource allocation using performance forecasting
- Hadoop branching: architectural impacts on energy and performance
- Message from the CCGrid Workshops Chairs [Editorial]
- Early-stage software startups: main challenges and possible answers
- Using dynamic configuration to manage a scalable multimedia distribution system
- Apache sustained competitive advantage in the web server industry
- Batching: a design pattern for efficient and flexible client/server interaction
Informações sobre o DOI: 10.1109/E-TEMS46250.2020.9111707 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2999429.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
