Exportar registro bibliográfico


Metrics:

Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model (2019)

  • Authors:
  • USP affiliated authors: YAEDÚ, RENATO YASSUTAKA FARIA - FOB ; SANT ANA, EDUARDO - FOB ; DUARTE, MARCO ANTONIO HUNGARO - FOB ; BULLEN, IZABEL REGINA FISCHER RUBIRA DE - FOB ; SOARES, MARIANA QUIRINO SILVEIRA - FOB ; CORRÊA, DANILO DA SILVA - FOB ; MADEIRA, MARIA FERNANDA CONCEIÇÃO - FOB
  • School: FOB
  • DOI: 10.1186/s40729-019-0187-1
  • Subjects: MORFOMETRIA; REGENERAÇÃO ÓSSEA; MANDÍBULA; ENXERTO ÓSSEO; TOMOGRAFIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1186/s40729-019-0187-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOARES, Mariana Quirino Silveira et al. Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model. International Journal of Implant Dentistry, v. 5, 2019Tradução . . Disponível em: https://doi.org/10.1186/s40729-019-0187-1. Acesso em: 05 jul. 2022.
    • APA

      Soares, M. Q. S., Van Dessel, J., Jacobs, R., Yaedú, R. Y. F., Sant’Ana, E., Corrêa, D. da S., et al. (2019). Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model. International Journal of Implant Dentistry, 5. doi:10.1186/s40729-019-0187-1
    • NLM

      Soares MQS, Van Dessel J, Jacobs R, Yaedú RYF, Sant’Ana E, Corrêa D da S, Madeira MFC, Duarte MAH, Rubira-Bullen IRF. Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model [Internet]. International Journal of Implant Dentistry. 2019 ; 5[citado 2022 jul. 05 ] Available from: https://doi.org/10.1186/s40729-019-0187-1
    • Vancouver

      Soares MQS, Van Dessel J, Jacobs R, Yaedú RYF, Sant’Ana E, Corrêa D da S, Madeira MFC, Duarte MAH, Rubira-Bullen IRF. Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model [Internet]. International Journal of Implant Dentistry. 2019 ; 5[citado 2022 jul. 05 ] Available from: https://doi.org/10.1186/s40729-019-0187-1

    Referências citadas na obra
    Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62:152–61.  https://doi.org/10.1016/j.jpor.2017.08.010 .
    Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomaterials research. 2017;21:9. https://doi.org/10.1186/s40824-017-0095-5 .
    Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. International journal of implant dentistry. 2017;3:23. https://doi.org/10.1186/s40729-017-0084-4 .
    Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. European journal of oral implantology. 2014;7 Suppl 2:S203–17
    Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94
    de Lange GL, Overman JR, Farre-Guasch E, Korstjens CM, Hartman B, Langenbach GE, et al. A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model. Oral surgery, oral medicine, oral pathology and oral radiology. 2014;117:8–22. https://doi.org/10.1016/j.oooo.2013.08.008 .
    Fienitz T, Moses O, Klemm C, Happe A, Ferrari D, Kreppel M, et al. Histological and radiological evaluation of sintered and non-sintered deproteinized bovine bone substitute materials in sinus augmentation procedures. A prospective, randomized-controlled, clinical multicenter study. Clin Oral Investig. 2017;21:787–94. https://doi.org/10.1007/s00784-016-1829-9 .
    Nart J, Barallat L, Jimenez D, Mestres J, Gomez A, Carrasco MA, et al. Radiographic and histological evaluation of deproteinized bovine bone mineral vs. deproteinized bovine bone mineral with 10% collagen in ridge preservation. A randomized controlled clinical trial. Clin Oral Implants Res. 2017;28:840–8. https://doi.org/10.1111/clr.12889 .
    Alayan J, Vaquette C, Saifzadeh S, Hutmacher D, Ivanovski S. A histomorphometric assessment of collagen-stabilized anorganic bovine bone mineral in maxillary sinus augmentation - a randomized controlled trial in sheep. Clin Oral Implants Res. 2016;27:734–43. https://doi.org/10.1111/clr.12652 .
    Wong RW, Rabie AB. Effect of bio-oss collagen and collagen matrix on bone formation. The open biomedical engineering journal. 2010;4:71–6. https://doi.org/10.2174/1874120701004010071 .
    Serrano Mendez CA, Lang NP, Caneva M, Ramirez Lemus G, Mora Solano G, Botticelli D. Comparison of allografts and xenografts used for alveolar ridge preservation. A clinical and histomorphometric RCT in humans. Clinical implant dentistry and related research. 2017;19:608–15. https://doi.org/10.1111/cid.12490 .
    Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I. Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). J Clin Periodontol. 2005;32:720–4. https://doi.org/10.1111/j.1600-051X.2005.00758.x .
    Alayan J, Ivanovski S. A prospective controlled trial comparing xenograft/autogenous bone and collagen-stabilized xenograft for maxillary sinus augmentation-Complications, patient-reported outcomes and volumetric analysis. Clin Oral Implants Res. 2018;29:248–62. https://doi.org/10.1111/clr.13107 .
    Galia CR, Macedo CA, Rosito R, Mello TM, Camargo LM, Moreira LF. In vitro and in vivo evaluation of lyophilized bovine bone biocompatibility. Clinics (Sao Paulo). 2008;63:801–6.
    Galia CR, Lourenco AL, Rosito R, Souza Macedo CA, Camargo LM. Physicochemical Characterization of Lyophilized Bovine Bone Grafts. Revista brasileira de ortopedia. 2011;46:444–51. https://doi.org/10.1016/S2255-4971(15)30260-3 .
    Trotta DR, Gorny C, Jr., Zielak JC, Gonzaga CC, Giovanini AF, Deliberador TM. Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: histologic and histomorphometric study in rat calvaria. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery. 2014;42:738–43. https://doi.org/10.1016/j.jcms.2013.11.004 .
    Lillo R, Corsini G, Venegas B, Chuhuaicura P, Beltrán V. Case Report Osteogenerative behavior of a new xenograft in a maxillary sinus lift: computed tomographic and histological findings. Int J Clin Exp Med. 2019;12:4403–8
    Bohner LOL, Mukai E, Mukai S, Tortamano P, Sesma N. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model. Contemporary clinical dentistry. 2016;7:398
    Gehrke SA, Mazón P, Del Fabbro M, Tumedei M, Aramburú Júnior J, Pérez-Díaz L, et al. Histological and Histomorphometric Analyses of Two Bovine Bone Blocks Implanted in Rabbit Calvaria. Symmetry. 2019;11:641
    Baldini N, De Sanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery. Dental materials : official publication of the Academy of Dental Materials. 2011;27:61–70. https://doi.org/10.1016/j.dental.2010.10.017 .
    Zizzari VL, Zara S, Tete G, Vinci R, Gherlone E, Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral surgery, oral medicine, oral pathology and oral radiology. 2016;122:392–402. https://doi.org/10.1016/j.oooo.2016.04.010 .
    Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Journal of biomedical materials research Part A. 2007;83:747–58. https://doi.org/10.1002/jbm.a.31329 .
    Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta biomaterialia. 2011;7:1009–18. https://doi.org/10.1016/j.actbio.2010.11.003 .
    Kang SR, Bok SC, Choi SC, Lee SS, Heo MS, Huh KH, et al. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. Journal of periodontal & implant science. 2016;46:116–27. https://doi.org/10.5051/jpis.2016.46.2.116 .
    Van Dessel J, Nicolielo LF, Huang Y, Coudyzer W, Salmon B, Lambrichts I, et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. European journal of oral implantology. 2017;10:95–105
    Chavda S, Levin L. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review. The Journal of oral implantology. 2018;44:74–84. https://doi.org/10.1563/aaid-joi-D-17-00053 .
    Marton K, Tamas SB, Orsolya N, Bela C, Ferenc D, Peter N, et al. Microarchitecture of the Augmented Bone Following Sinus Elevation with an Albumin Impregnated Demineralized Freeze-Dried Bone Allograft (BoneAlbumin) versus Anorganic Bovine Bone Mineral: A Randomized Prospective Clinical, Histomorphometric, and Micro-Computed Tomography Study. Materials (Basel). 2018;11. https://doi.org/10.3390/ma11020202 .
    Lindhe J, Cecchinato D, Donati M, Tomasi C, Liljenberg B. Ridge preservation with the use of deproteinized bovine bone mineral. Clin Oral Implants Res. 2014;25:786–90. https://doi.org/10.1111/clr.12170 .
    Valentini P, Abensur D, Wenz B, Peetz M, Schenk R. Sinus grafting with porous bone mineral (Bio-Oss) for implant placement: a 5-year study on 15 patients. The International journal of periodontics & restorative dentistry. 2000;20:245–53.
    Del Fabbro M, Testori T, Francetti L, Weinstein R. Systematic review of survival rates for implants placed in the grafted maxillary sinus. The International journal of periodontics & restorative dentistry. 2004;24:565–77.
    Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of orthopaedic translation. 2015;3:95–104. https://doi.org/10.1016/j.jot.2015.05.002 .
    Desterro FdPd, Sader MS, Soares GDdA, Vidigal Jr GM. Can inorganic bovine bone grafts present distinct properties? Brazilian dental journal. 2014;25:282–8.
    Rolvien T, Barbeck M, Wenisch S, Amling M, Krause M. Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials. International journal of molecular sciences. 2018;19. https://doi.org/10.3390/ijms19102893 .
    Accorsi-Mendonça T, Conz MB, Barros TC, Sena LÁd, Soares GdA, Granjeiro JM. Physicochemical characterization of two deproteinized bovine xenografts. Brazilian oral research. 2008;22:5–10.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2010;25:1468–86. https://doi.org/10.1002/jbmr.141 .
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002 .
    Miloro M, Haralson DJ, Desa V. Bone healing in a rabbit mandibular defect using platelet-rich plasma. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2010;68:1225–30. https://doi.org/10.1016/j.joms.2009.09.090 .
    Schlegel KA, Lang FJ, Donath K, Kulow JT, Wiltfang J. The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:7–13. https://doi.org/10.1016/j.tripleo.2005.09.011 .

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022