Exportar registro bibliográfico


Metrics:

Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing (2020)

  • Authors:
  • USP affiliated authors: MACHADO, SERGIO ANTONIO SPINOLA - IQSC ; TREMILIOSI FILHO, GERMANO - IQSC ; BANDEIRA, RAFAEL MARINHO - IQSC ; RÊGO, GALTIERE CORRÊA - EESC ; CASTELETTI, LUIZ CARLOS - EESC
  • Schools: IQSC; EESC
  • DOI: 10.1007/s42452-020-2905-y
  • Subjects: ELETROQUÍMICA; QUÍMICA DE SUPERFÍCIE; CORROSÃO
  • Keywords: AC anodization; Ti–6Al–4V alloy; Oxide film
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s42452-020-2905-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BANDEIRA, Rafael Marinho; VAN DRUNEN, Julia; CORRER, Wagner Rafael; et al. Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing. SN Applied Sciences, Heidelberg, v. 2, 2020. Disponível em: < https://doi.org/10.1007/s42452-020-2905-y > DOI: 10.1007/s42452-020-2905-y.
    • APA

      Bandeira, R. M., van Drunen, J., Correr, W. R., Casteletti, L. C., Machado, S. A. S., Tremiliosi Filho, G., et al. (2020). Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing. SN Applied Sciences, 2. doi:10.1007/s42452-020-2905-y
    • NLM

      Bandeira RM, van Drunen J, Correr WR, Casteletti LC, Machado SAS, Tremiliosi Filho G, Rêgo GC, Picone CA. Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing [Internet]. SN Applied Sciences. 2020 ; 2Available from: https://doi.org/10.1007/s42452-020-2905-y
    • Vancouver

      Bandeira RM, van Drunen J, Correr WR, Casteletti LC, Machado SAS, Tremiliosi Filho G, Rêgo GC, Picone CA. Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing [Internet]. SN Applied Sciences. 2020 ; 2Available from: https://doi.org/10.1007/s42452-020-2905-y

    Referências citadas na obra
    Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32:1684. https://doi.org/10.1016/j.matdes.2010.09.011
    Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844. https://doi.org/10.1016/j.actamat.2012.10.043
    Mohammed MT, Khan ZA, Geetha M, Siddiquee AN (2015) Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. J Alloy Compd 634:272. https://doi.org/10.1016/j.jallcom.2015.02.095
    Romero A, García I, Arenas MA, López V, Vázquez A (2015) Ti6Al4V titanium alloy welded using concentrated solar energy. J Mater Process Technol 223:284. https://doi.org/10.1016/j.jmatprotec.2015.04.015
    Romankov S, Sha W, Ermakov E, Mamaeva A (2007) Characterization of interdiffusion growth of aluminized layer on Ti alloys. J Alloy Compd 429:143. https://doi.org/10.1016/j.jallcom.2006.04.017
    Sarraf M, Zalnezhad E, Bushroa AR, Hamouda AMS, Rafieerad AR, Nasiri-Tabrizi B (2015) Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceram Int 41:7952. https://doi.org/10.1016/j.ceramint.2015.02.136
    Assis SL, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815. https://doi.org/10.1016/j.electacta.2005.02.121
    Sadeghi M, Kharaziha M, Salimijazi HR, Tabesh E (2019) Role of micro-dimple array geometry on the biological and tribological performance of Ti6Al4V for biomedical applications. Surf Coat Technol 362:282. https://doi.org/10.1016/j.surfcoat.2019.01.113
    Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223. https://doi.org/10.1016/j.jmatprotec.2008.06.020
    Sun W, Tan AWY, Khun NW, Marinescu I, Liu E (2017) Effect of substrate surface condition on fatigue behavior of cold sprayed Ti6Al4V coatings. Surf Coat Technol 320:452. https://doi.org/10.1016/j.surfcoat.2016.11.093
    Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4V alloy. Surf Coat Technol 202:4583. https://doi.org/10.1016/j.surfcoat.2008.03.011
    Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49. https://doi.org/10.1016/j.mser.2004.11.001
    Ghoneim AA, Mogoda AS, Awad KA, Heakal FE (2012) Electrochemical studies of titanium and its Ti–6Al–4V alloy in phosphoric acid solutions. Int J Electrochem Sci 7:6539
    Milošev I, Metikoš-Huković M, Strehblow HH (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103. https://doi.org/10.1016/S0142-9612(00)00145-9
    Pound BG (2014) Passive films on metallic biomaterials under simulated physiological conditions. J Biomed Mater Res, Part A 102:1595. https://doi.org/10.1002/jbm.a.34798
    Zhang Y, Addison O, Yu F, Troconis BCR, Scully JR, Davenport AJ (2018) Time-dependent enhanced corrosion of Ti6Al4V in the presence of H2O2 and albumin. Sci Rep 8:3185. https://doi.org/10.1038/s41598-018-21332-x
    Addison O, Davenport AJ, Newport RJ et al (2012) Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? J R Soc Interface 9:3161. https://doi.org/10.1098/rsif.2012.0438
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115. https://doi.org/10.1016/0267-6605(92)90056-Y
    Abdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater 20:407. https://doi.org/10.1016/j.jmbbm.2012.11.014
    Hsu RW-W, Yang C-C, Huang C-A, Chen Y-S (2004) Electrochemical corrosion properties of Ti–6Al–4V implant alloy in the biological environment. Mater Sci Eng, A 380:100. https://doi.org/10.1016/j.msea.2004.03.069
    Li B, Shen Y, Luo L, Hu W, Zhang Z (2013) Surface aluminizing on Ti–6Al–4V alloy via a novel multi-pass friction-stir lap welding method: Preparation process, oxidation behavior and interlayer evolution. Mater Des 49:647. https://doi.org/10.1016/j.matdes.2013.02.013
    H-z Sun J, Zheng YS, Chi J, Y-d Fu (2019) Effect of the deformation on nitrocarburizing microstructure of the cold deformed Ti–6Al–4V alloy. Surf Coat Technol 362:234. https://doi.org/10.1016/j.surfcoat.2019.01.079
    İzmir M, Ercan B (2019) Anodization of titanium alloys for orthopedic applications. Front Chem Sci Eng 13:28. https://doi.org/10.1007/s11705-018-1759-y
    Wadhwani C, Brindis M, Kattadiyil MT, O’Brien R, Chung K-H (2018) Colorizing titanium-6aluminum-4vanadium alloy using electrochemical anodization: Developing a color chart. J Prosthetic Dent 119:26. https://doi.org/10.1016/j.prosdent.2017.02.010
    Hrapovic S, Luan BL, D'Amours M, Vatankhah G, Jerkiewicz G (2001) Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers. Langmuir 17:3051. https://doi.org/10.1021/la001694s
    Cabrera N, Mott NF (1949) Theory of the oxidation of metals. Rep Prog Phys 12:163. https://doi.org/10.1088/0034-4885/12/1/308
    Narayanan R, Seshadri SK (2007) Phosphoric acid anodization of Ti–6Al–4V—Structural and corrosion aspects. Corros Sci 49:542. https://doi.org/10.1016/j.corsci.2006.06.021
    Xu H, Xing H, Dong A et al (2019) Investigation of gum metal coating on Ti6Al4V plate by direct laser deposition. Surf Coat Technol 363:161. https://doi.org/10.1016/j.surfcoat.2019.01.086
    Cho Y-S, Liao L-K, Hsu C-H et al (2019) Effect of substrate bias on biocompatibility of amorphous carbon coatings deposited on Ti6Al4V by PECVD. Surf Coat Technol 357:212. https://doi.org/10.1016/j.surfcoat.2018.09.070
    Jerkiewicz G, Strzelecki H, Wieckowski A (1996) A new procedure of formation of multicolor passive films on titanium: compositional depth profile analysis. Langmuir 12:1005. https://doi.org/10.1021/la940578k
    Jerkiewicz G, Zhao B, Hrapovic S, Luan BL (2008) Discovery of reversible switching of coloration of passive layers on titanium. Chem Mater 20:1877. https://doi.org/10.1021/cm703052p
    Holmberg RJ, Beauchemin D, Jerkiewicz G (2014) Characteristics of colored passive layers on titanium: morphology, optical properties, and corrosion resistance. ACS Appl Mater Interfaces 6:21576. https://doi.org/10.1021/am506572m
    Holmberg RJ, Bolduc S, Beauchemin D et al (2012) Characteristics of colored passive layers on zirconium: morphology, optical properties, and corrosion resistance. ACS Appl Mater Interfaces 4:6487. https://doi.org/10.1021/am301389u
    Fekry AM (2009) The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti–6Al–4V alloy in oxalic acid. Electrochim Acta 54:3480. https://doi.org/10.1016/j.electacta.2008.12.060
    Sigma-Aldrich (2019) Northwest Missouri State University, Maryville, USA. https://www.nwmissouri.edu/naturalsciences/sds/o/Oxalic%20acid%20dihydrate.pdf. Accessed 10 Dec 2019
    Dassanayake U, Gnanathasan CA (2012) Acute renal failure following oxalic acid poisoning: a case report. J Occup Med Toxicol 7:17. https://doi.org/10.1186/1745-6673-7-17
    NT Corporation (2019) Safety data sheet: ammonium fluoroborate. https://noahtech.com/data/safety.17155.pdf. Accessed 11 Dec 2019
    Bai Y, Gai X, Li S et al (2017) Improved corrosion behaviour of electron beam melted Ti–6Al–4V alloy in phosphate buffered saline. Corros Sci 123:289. https://doi.org/10.1016/j.corsci.2017.05.003
    Yazdi R, Ghasemi HM, Wang C, Neville A (2017) Bio-corrosion behaviour of oxygen diffusion layer on Ti–6Al–4V during tribocorrosion. Corros Sci 128:23. https://doi.org/10.1016/j.corsci.2017.08.031
    Liu XM, Wu SL, Yeung KWK, Chung CY, Chu PK (2012) Surface Coloration and electrochemical impedance spectroscopy characterization of oxygen plasma implanted orthopaedic titanium alloys. Int J Electrochem Sci 7:6638
    van Drunen J, Zhao B, Jerkiewicz G (2011) Corrosion behavior of surface-modified titanium in a simulated body fluid. J Mater Sci 46:5931. https://doi.org/10.1007/s10853-011-5548-y
    Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302
    Boyan BD, Batzer R, Kieswetter K et al (1998) Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1α,25-(OH)2D3. J Biomed Mater Res 39:77. https://doi.org/10.1002/(SICI)1097-4636(199801)39:1%3c77:AID-JBM10%3e3.0.CO;2-L
    Bose S, Pathak LC, Singh R (2018) Response of boride coating on the Ti–6Al–4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application. Appl Surf Sci 433:1158. https://doi.org/10.1016/j.apsusc.2017.09.223
    Tamilselvi S, Raman V, Rajendran N (2006) Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta 52:839. https://doi.org/10.1016/j.electacta.2006.06.018
    Alves VA, Reis RQ, Santos ICB et al (2009) In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C. Corros Sci 51:2473. https://doi.org/10.1016/j.corsci.2009.06.035
    Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41:1143. https://doi.org/10.1016/0013-4686(95)00465-3
    Schneider M, Schroth S, Schilm J, Michaelis A (2009) Micro-EIS of anodic thin oxide films on titanium for capacitor applications. Electrochim Acta 54:2663. https://doi.org/10.1016/j.electacta.2008.11.003
    Alves AC, Wenger F, Ponthiaux P et al (2017) Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochim Acta 234:16. https://doi.org/10.1016/j.electacta.2017.03.011
    Assis SL, Costa I (2007) Electrochemical evaluation of Ti–13Nb–13Zr, Ti–6Al–4V and Ti–6Al–7Nb alloys for biomedical application by long-term immersion tests. Mater Corros 58:329. https://doi.org/10.1002/maco.200604027
    Robin A, Carvalho OAS, Schneider SG, Schneider S (2008) Corrosion behavior of Ti–xNb–13Zr alloys in ringer's solution. Mater Corros 59:929. https://doi.org/10.1002/maco.200805014
    Bandeira RM, van Drunen J, Garcia AC, Tremiliosi-Filho G (2017) Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy. Electrochim Acta 240:215. https://doi.org/10.1016/j.electacta.2017.04.083
    Munro A, Cunningham MF, Jerkiewicz G (2011) Spectral and physical properties of electrochemically formed colored layers on titanium covered with clearcoats. ACS Appl Mater Interfaces 3:1195. https://doi.org/10.1021/am2000196
    Zhao B, Jerkiewicz G (2006) Electrochemically formed passive layers on titanium — Preparation and biocompatibility assessment in Hank's balanced salt solution. Can J Chem 84:1132. https://doi.org/10.1139/v06-142

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022