Evaluation of block-matching and 3D filtering and wavelet transform with shrink-thresholding technique for digital mammography denoising (2015)
- Authors:
- USP affiliated authors: VIEIRA, MARCELO ANDRADE DA COSTA - EESC ; OLIVEIRA, HELDER CESAR RODRIGUES DE - EESC ; NUNES, POLYANA FERREIRA - EESC ; BORGES, LUCAS RODRIGUES - EESC
- Unidade: EESC
- Subjects: ENGENHARIA ELÉTRICA; MAMOGRAFIA; IMAGEM; ANÁLISE DE ONDALETAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre, RS
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: Workshop de Visão Computacional - WVC
-
ABNT
OLIVEIRA, Helder Cesar Rodrigues de et al. Evaluation of block-matching and 3D filtering and wavelet transform with shrink-thresholding technique for digital mammography denoising. 2015, Anais.. Porto Alegre, RS: SBC, 2015. . Acesso em: 10 jan. 2026. -
APA
Oliveira, H. C. R. de, Nunes, P. F., Borges, L. R., Bakic, P. R., Maidment, A. D. A., & Vieira, M. A. da C. (2015). Evaluation of block-matching and 3D filtering and wavelet transform with shrink-thresholding technique for digital mammography denoising. In Proceedings. Porto Alegre, RS: SBC. -
NLM
Oliveira HCR de, Nunes PF, Borges LR, Bakic PR, Maidment ADA, Vieira MA da C. Evaluation of block-matching and 3D filtering and wavelet transform with shrink-thresholding technique for digital mammography denoising. Proceedings. 2015 ;[citado 2026 jan. 10 ] -
Vancouver
Oliveira HCR de, Nunes PF, Borges LR, Bakic PR, Maidment ADA, Vieira MA da C. Evaluation of block-matching and 3D filtering and wavelet transform with shrink-thresholding technique for digital mammography denoising. Proceedings. 2015 ;[citado 2026 jan. 10 ] - Using the non-local means algorithm to denoise mammographic images acquired with reduced radiation dose
- Método para simulação da redução da dose de radiação na mamografia
- Unbiased injection of signal-dependent noise in variance-stabilized range
- Noise models for virtual clinical trials of digital breast tomosynthesis
- Exploratory learning with convolutional autoencoder for discrimination of architectural distortion in digital mammography
- Data augmentation: effect in deep convolutional neural network for the detection of architectural distortion in digital mammography
- A novel fusion-based texture descriptor to improve the detection of architectural distortion in digital mammography
- Denoising of mammograms subject to structural and spatially-correlated noise: a virtual clinical trial
- Transfer learning in deep convolutional neural networks for detection of architectural distortion in digital mammography
- Noise modeling and variance stabilization of a computed radiography (CR) mammography system subject to fixed-pattern noise
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
