Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data (2020)
- Authors:
- Autor USP: ALMEIDA, DANILO ROBERTI ALVES DE - ESALQ
- Unidade: ESALQ
- DOI: 10.3390/rs12091438
- Subjects: ALGORITMOS; AMOSTRAGEM; APRENDIZADO COMPUTACIONAL; DENDROMETRIA; EUCALIPTO; MODELAGEM DE DADOS; TECNOLOGIA LIDAR
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Remote Sensing
- ISSN: 2072-4292
- Volume/Número/Paginação/Ano: v. 12, p. 1-19, May 2020
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
SILVA, Vanessa Sousa da et al. Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data. Remote Sensing, v. 12, p. 1-19, 2020Tradução . . Disponível em: https://doi.org/10.3390/rs12091438. Acesso em: 27 dez. 2025. -
APA
Silva, V. S. da, Silva, C. A., Mohan, M., Cardil, A., Rex, F. E., Loureiro, G. H., et al. (2020). Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data. Remote Sensing, 12, 1-19. doi:10.3390/rs12091438 -
NLM
Silva VS da, Silva CA, Mohan M, Cardil A, Rex FE, Loureiro GH, Almeida DRA de, Broadbent EN, Gorgens EB, Dalla Corte AP, Silva EA, Valbuena R, Klauberg C. Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data [Internet]. Remote Sensing. 2020 ; 12 1-19.[citado 2025 dez. 27 ] Available from: https://doi.org/10.3390/rs12091438 -
Vancouver
Silva VS da, Silva CA, Mohan M, Cardil A, Rex FE, Loureiro GH, Almeida DRA de, Broadbent EN, Gorgens EB, Dalla Corte AP, Silva EA, Valbuena R, Klauberg C. Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data [Internet]. Remote Sensing. 2020 ; 12 1-19.[citado 2025 dez. 27 ] Available from: https://doi.org/10.3390/rs12091438 - Assessing tropical forest degradation and restoration through lidar remote sensing
- Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
- Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System
- Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate
- Plant‐mediated effects of fire and fragmentation drive plant–pollinator interaction β‐diversity in fire‐dependent pine savannas
- A conceptual model for detecting small-scale forest disturbances based on ecosystem worphological traits
- Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system
- Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes
- Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?
- Mapping the density of giant trees in the Amazon
Informações sobre o DOI: 10.3390/rs12091438 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2997868-Combined Impact o... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
